Higher Engineering Mathematics

(Greg DeLong) #1
THE SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 647

K

Equating s^2 terms gives: 0=A+C, from
which,A=−1, sinceC=1. Hence,

L−^1

{
9
s^2 (s−3)

}
=L−^1

{

1
s


3
s^2

+

1
s− 3

}

=− 1 − 3 x+e^3 x, from (i),

(vi) and (iii) of Table 66.1.

i.e.y=e^3 x− 3 x− 1

Problem 4. Use Laplace transforms to solve
the differential equation:

d^2 y
dx^2

− 7

dy
dx

+ 10 y=e^2 x+20, given that when

x=0,y=0 and

dy
dx

=−

1
3

Using the procedure:


(i)L

{
d^2 y
dx^2

}
− 7 L

{
dy
dx

}
+ 10 L{y}=L{e^2 x+ 20 }

Hence [s^2 L{y}−sy(0)−y′(0)]−7[sL{y}

−y(0)]+ 10 L{y}=

1
s− 2

+

20
s

(ii)y(0)=0 andy′(0)=−

1
3

Hence s^2 L{y}− 0 −

(

1
3

)
− 7 sL{y}+ 0

+ 10 L{y}=

21 s− 40
s(s−2)

(iii) (s^2 − 7 s+10)L{y}=


21 s− 40
s(s−2)


1
3

=

3(21s−40)−s(s−2)
3 s(s−2)

=

−s^2 + 65 s− 120
3 s(s−2)

Hence L{y}=

−s^2 + 65 s− 120
3 s(s−2)(s^2 − 7 s+10)

=

1
3

[
−s^2 + 65 s− 120
s(s−2)(s−2)(s−5)

]

=

1
3

[
−s^2 + 65 s− 120
s(s−5)(s−2)^2

]

(iv)y=

1
3

L−^1

{
−s^2 + 65 s− 120
s(s−5)(s−2)^2

}

−s^2 + 65 s− 120
s(s−5)(s−2)^2


A
s

+

B
s− 5

+

C
s− 2

+

D
(s−2)^2


(
A(s−5)(s−2)^2 +B(s)(s−2)^2
+C(s)(s−5)(s−2)+D(s)(s−5)

)

s(s−5)(s−2)^2
Hence

−s^2 + 65 s− 120

≡A(s−5)(s−2)^2 +B(s)(s−2)^2

+C(s)(s−5)(s−2)+D(s)(s−5)
Whens=0,− 120 =− 20 A, from which,A=6.

Whens=5, 180= 45 B, from which,B=4.

Whens=2, 6=− 6 D, from which,D=−1.

Equatings^3 terms gives: 0=A+B+C, from
which,C=−10.

Hence

1
3

L−^1

{
−s^2 + 65 s− 120
s(s−5)(s−2)^2

}

=

1
3

L−^1

{
6
s

+

4
s− 5


10
s− 2


1
(s−2)^2

}

=

1
3

[6+4e^5 x−10 e^2 x−xe^2 x]

Thusy= 2 +

4
3

e^5 x−

10
3

e^2 x−

x
3

e^2 x

Problem 5. The current flowing in an electri-
cal circuit is given by the differential equation
Ri+L(di/dt)=E, whereE,LandRare con-
stants. Use Laplace transforms to solve the
equation for current igiven that whent=0,
i=0.

Using the procedure:

(i)L{Ri}+L

{
L

di
dt

}
=L{E}

i.e. RL{i}+L[sL{i}−i(0)]=

E
s
Free download pdf