THE SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 647
K
Equating s^2 terms gives: 0=A+C, from
which,A=−1, sinceC=1. Hence,
L−^1
{
9
s^2 (s−3)
}
=L−^1
{
−
1
s
−
3
s^2
+
1
s− 3
}
=− 1 − 3 x+e^3 x, from (i),
(vi) and (iii) of Table 66.1.
i.e.y=e^3 x− 3 x− 1
Problem 4. Use Laplace transforms to solve
the differential equation:
d^2 y
dx^2
− 7
dy
dx
+ 10 y=e^2 x+20, given that when
x=0,y=0 and
dy
dx
=−
1
3
Using the procedure:
(i)L
{
d^2 y
dx^2
}
− 7 L
{
dy
dx
}
+ 10 L{y}=L{e^2 x+ 20 }
Hence [s^2 L{y}−sy(0)−y′(0)]−7[sL{y}
−y(0)]+ 10 L{y}=
1
s− 2
+
20
s
(ii)y(0)=0 andy′(0)=−
1
3
Hence s^2 L{y}− 0 −
(
−
1
3
)
− 7 sL{y}+ 0
+ 10 L{y}=
21 s− 40
s(s−2)
(iii) (s^2 − 7 s+10)L{y}=
21 s− 40
s(s−2)
−
1
3
=
3(21s−40)−s(s−2)
3 s(s−2)
=
−s^2 + 65 s− 120
3 s(s−2)
Hence L{y}=
−s^2 + 65 s− 120
3 s(s−2)(s^2 − 7 s+10)
=
1
3
[
−s^2 + 65 s− 120
s(s−2)(s−2)(s−5)
]
=
1
3
[
−s^2 + 65 s− 120
s(s−5)(s−2)^2
]
(iv)y=
1
3
L−^1
{
−s^2 + 65 s− 120
s(s−5)(s−2)^2
}
−s^2 + 65 s− 120
s(s−5)(s−2)^2
≡
A
s
+
B
s− 5
+
C
s− 2
+
D
(s−2)^2
≡
(
A(s−5)(s−2)^2 +B(s)(s−2)^2
+C(s)(s−5)(s−2)+D(s)(s−5)
)
s(s−5)(s−2)^2
Hence
−s^2 + 65 s− 120
≡A(s−5)(s−2)^2 +B(s)(s−2)^2
+C(s)(s−5)(s−2)+D(s)(s−5)
Whens=0,− 120 =− 20 A, from which,A=6.
Whens=5, 180= 45 B, from which,B=4.
Whens=2, 6=− 6 D, from which,D=−1.
Equatings^3 terms gives: 0=A+B+C, from
which,C=−10.
Hence
1
3
L−^1
{
−s^2 + 65 s− 120
s(s−5)(s−2)^2
}
=
1
3
L−^1
{
6
s
+
4
s− 5
−
10
s− 2
−
1
(s−2)^2
}
=
1
3
[6+4e^5 x−10 e^2 x−xe^2 x]
Thusy= 2 +
4
3
e^5 x−
10
3
e^2 x−
x
3
e^2 x
Problem 5. The current flowing in an electri-
cal circuit is given by the differential equation
Ri+L(di/dt)=E, whereE,LandRare con-
stants. Use Laplace transforms to solve the
equation for current igiven that whent=0,
i=0.
Using the procedure:
(i)L{Ri}+L
{
L
di
dt
}
=L{E}
i.e. RL{i}+L[sL{i}−i(0)]=
E
s