Higher Engineering Mathematics

(Greg DeLong) #1
THE SOLUTION OF DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 649

K





d^2 y
dx^2

+

dy
dx

− 2 y=3 cos 3x−11 sin 3x,
giveny(0)=0 andy′(0)= 6

[y=ex−e−^2 x+sin 3x]





d^2 y
dx^2

− 2

dy
dx

+ 2 y=3excos 2x,given

y(0)=2 andy′(0)= 5
[
y=3ex( cosx+sinx)−excos 2x

]


  1. Solve, using Laplace transforms, Problems
    4 to 9 of Exercise 188, page 477 and
    Problems 1 to 5 of Exercise 189, page 480.

  2. Solve, using Laplace transforms, Problems
    3 to 6 of Exercise 190, page 483, Problems
    5 and 6 of Exercise 191, page 485, Prob-
    lems 4 and 7 of Exercise 192, page 487 and
    Problems 5 and 6 of Exercise 193, page 490.

Free download pdf