Higher Engineering Mathematics

(Greg DeLong) #1
648 LAPLACE TRANSFORMS

(ii)i(0)=0, henceRL{i}+LsL{i}=

E
s

(iii) Rearranging gives:


(R+Ls)L{i}=

E
s

i.e. L{i}=

E
s(R+Ls)

(iv)i=L−^1

{
E
s(R+Ls)

}

E
s(R+Ls)


A
s

+

B
R+Ls


A(R+Ls)+Bs
s(R+Ls)

Hence E=A(R+Ls)+Bs

When s=0,E=AR,

from which, A=

E
R

When s=−

R
L

,E=B

(

R
L

)

from which, B=−

EL
R

HenceL−^1

{
E
s(R+Ls)

}

=L−^1

{
E/R
s

+

−EL/R
R+Ls

}

=L−^1

{
E
Rs


EL
R(R+Ls)

}

=L−^1


⎪⎨

⎪⎩

E
R

(
1
s

)

E
R




1
R
L

+s





⎪⎬

⎪⎭

=

E
R

L−^1


⎪⎪

⎪⎪

1
s


1
(
s+

R
L

)


⎪⎪

⎪⎪

Hencecurrenti=

E
R

(
1 −e−

Rt
L

)

Now try the following exercise.

Exercise 238 Further problems on solving
differential equations using Laplace trans-
forms


  1. A first order differential equation involving
    currentiin a seriesR−Lcircuit is given by:
    di
    dt


+ 5 i=

E
2

andi=0 at timet=0.

Use Laplace transforms to solve for i
when (a)E=20 (b)E=40 e−^3 t and (c)
E=50 sin 5t.




(a)i=2(1−e−^5 t)
(b)i=10( e−^3 t−e−^5 t)

(c)i=

5
2

(e−^5 t−cos 5t+sin 5t)





In Problems 2 to 9, use Laplace transforms to
solve the given differential equations.


  1. 9


d^2 y
dt^2

− 24

dy
dt

+ 16 y=0, given y(0)= 3

andy′(0)=3.

[
y=(3−t)e

4
3 t

]

3.

d^2 x
dt^2

+ 100 x=0, given x(0)= 2 and

x′(0)=0. [x=2 cos 10t]

4.

d^2 i
dt^2

+ 1000

di
dt

+ 250000 i=0, given

i(0)=0 andi′(0)=100. [i= 100 te−^500 t]

5.

d^2 x
dt^2

+ 6

dx
dt

+ 8 x=0, givenx(0)=4 and

x′(0)=8. [x=4(3e−^2 t−2e−^4 t)]

6.

d^2 y
dx^2

− 2

dy
dx

+y=3e^4 x,giveny(0)=−

2
3
andy′(0)= 4

1

(^3) [
y=(4x−1) ex+
1
3
e^4 x
]
7.
d^2 y
dx^2



  • 16 y=10 cos 4x,giveny(0)=3 and
    y′(0)=4.
    [
    y=3 cos 4x+sin 4x+
    5
    4
    xsin 4x
    ]

Free download pdf