THE SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS USING LAPLACE TRANSFORMS 653
K
Returning to equations (A) to determineL{x}and
hencex:
(2s−1)×equation (1′′′) and 5s×(2′′′) gives:
(2s−1)(3s+2)L{x}− 5 s(2s−1)L{y}
=(2s−1)
(
6
s
+ 9
)
(5)
and −s(5s)L{x}+ 5 s(2s−1)L{y}
= 5 s
(
−
1
s
− 2
)
(6)
i.e. (6s^2 +s−2)L{x}− 5 s(2s−1)L{y}
= 12 + 18 s−
6
s
−9( 5 ′)
and − 5 s^2 L{x}+ 5 s(2s−1)L{y}
=− 5 − 10 s (6′)
Adding equations (5′) and (6′) gives:
(s^2 +s−2)L{x}=− 2 + 8 s−
6
s
=
− 2 s+ 8 s^2 − 6
s
from which, L{x}=
8 s^2 − 2 s− 6
s(s^2 +s−2)
=
8 s^2 − 2 s− 6
s(s+2)(s−1)
Using partial fractions
8 s^2 − 2 s− 6
s(s+2)(s−1)
≡
A
s
+
B
(s+2)
+
C
(s−1)
=
A(s+2)(s−1)+Bs(s−1)+Cs(s+2)
s(s+2)(s−1)
i.e. 8 s^2 − 2 s− 6 =A(s+2)(s−1)
+Bs(s−1)+Cs(s+2)
When s=0,− 6 =− 2 A, hence A= 3
When s=1, 0= 3 C, hence C= 0
When s=−2, 30= 6 B, hence B= 5
Thus L{x}=
8 s^2 − 2 s− 6
s(s+2)(s−1)
=
3
s
+
5
(s+2)
Hence x=L−^1
{
3
s
+
5
s+ 2
}
= 3 +5e−^2 t
Therefore the solutions of the given simultaneous
differential equations are
y= 1 +2e−^2 t and x= 3 +5e−^2 t
(These solutions may be checked by substituting the
expressions forxandyinto the original equations.)
Problem 3. Solve the following pair of simul-
taneous differential equations
d^2 x
dt^2
−x=y
d^2 y
dt^2
+y=−x
given that at t=0, x=2, y=−1,
dx
dt
= 0
and
dy
dt
=0.
Using the procedure:
(i) [s^2 L{x}−sx(0)−x′(0)]−L{x}=L{y} (1)
[s^2 L{y}−sy(0)−y′(0)]+L{y}=−L{x} (2)
from equation (4), page 635
(ii)x(0)=2,y(0)=−1,x′(0)=0 andy′(0)= 0
hence s^2 L{x}− 2 s−L{x}=L{y} (1′)
s^2 L{y}+s+L{y}=−L{x} (2′)
(iii) Rearranging gives:
(s^2 −1)L{x}−L{y}= 2 s (3)
L{x}+(s^2 +1)L{y}=−s (4)
Equation (3)×(s^2 +1) and equation (4)× 1
gives:
(s^2 +1)(s^2 −1)L{x}−(s^2 +1)L{y}
=(s^2 +1)2s (5)
L{x}+(s^2 +1)L{y}=−s (6)