Assign-18-H8152.tex 23/6/2006 15: 17 Page 655
K
Laplace transforms
Assignment 18
This assignment covers the material contained
in Chapters 64 to 68.
The marks for each question are shown in
brackets at the end of each question.
- Find the Laplace transforms of the following
functions:
(a) 2t^3 − 4 t+ 5 (b) 3e−^2 t−4 sin 2t
(c) 3 cosh 2t (d) 2t^4 e−^3 t
(e) 5e^2 tcos 3t (f) 2e^3 tsinh 4t (16) - Find the inverse Laplace transforms of the fol-
lowing functions:
(a)
5
2 s+ 1
(b)
12
s^5
(c)
4 s
s^2 + 9
(d)
5
s^2 − 9
(e)
3
(s+2)^4
(f)
s− 4
s^2 − 8 s− 20
(g)
8
s^2 − 4 s+ 3
(17)
- Use partial fractions to determine the following:
(a) L−^1
{
5 s− 1
s^2 −s− 2
}
(b) L−^1
{
2 s^2 + 11 s− 9
s(s−1)(s+3)
}
(c) L−^1
{
13 −s^2
s(s^2 + 4 s+13)
}
(24)
- In a galvanometer the deflectionθsatisfies the
differential equation:
d^2 θ
dt^2
+ 2
dθ
dt
+θ= 4
Use Laplace transforms to solve the equation for
θgiven that whent=0,θ= 0 and
dθ
dt
= 0
(13)
- Solve the following pair of simultaneous differ-
ential equations:
3
dx
dt
= 3 x+ 2 y
2
dy
dt
+ 3 x= 6 y
given that whent=0,x=1 andy=3. (20)
- Determine the poles and zeros for the trans-
fer function:F(s)=
(s+2)(s−3)
(s+3)(s^2 + 2 s+5)
and plot
them on a pole-zero diagram. (10)