666 FOURIER SERIESHenceπ^2
8= 1 +1
32+1
52+1
72+···Problem 5. Deduce the Fourier series for the
functionf(θ)=θ^2 in the range 0 to 2π.f(θ)=θ^2 is shown in Fig. 70.4 in the range 0 to 2π.
The function is not periodic but is constructed out-
side of this range so that it is periodic of period 2π,
as shown by the broken lines.
− 4 π− 2 π 02 π 4 π4 π^2f(θ) = θ^2f(θ)θFigure 70.4For a Fourier series:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)a 0 =1
2 π∫ 2 π0f(θ)dθ=1
2 π∫ 2 π0θ^2 dθ=1
2 π[
θ^3
3] 2 π0=1
2 π[
8 π^3
3− 0]
=4 π^2
3an=1
π∫ 2 π0f(θ) cosnθdθ=1
π∫ 2 π0θ^2 cosnθdθ=1
π[
θ^2 sinnθ
n+2 θcosnθ
n^2−2 sinnθ
n^3] 2 π0
by parts=1
π[(
0 +4 πcos 2πn
n^2− 0)
−(0)]=4
n^2cos 2πn=4
n^2whenn=1, 2, 3,···Hencea 1 =4
12,a 2 =4
22,a 3 =4
32and so onbn=1
π∫ 2 π0f(θ) sinnθdθ=1
π∫ 2 π0θ^2 sinnθdθ=1
π[
−θ^2 cosnθ
n+2 θsinnθ
n^2+2 cosnθ
n^3] 2 π0
by parts=1
π[(
− 4 π^2 cos 2πn
n+ 0 +2 cos 2πn
n^3)−(
0 + 0 +2 cos 0
n^3)]=1
π[
− 4 π^2
n+2
n^3−2
n^3]
=− 4 π
nHenceb 1 =− 4 π
1,b 2 =− 4 π
2,b 3 =− 4 π
3, and so on.Thus f(θ)=θ^2=4 π^2
3+∑∞n= 1(
4
n^2cosnθ−4 π
nsinnθ)i.e.θ^2 =4 π^2
3+ 4(
cosθ+1
22cos 2θ+1
32cos 3θ+···)− 4 π(
sinθ+1
2sin 2θ+1
3sin 3θ+···)for values ofθbetween 0 and 2π.Problem 6. In the Fourier series of Problem 5,letθ=πand determine a series forπ^2
12.Whenθ=π,f(θ)=π^2Hence π^2 =4 π^2
3+ 4(
cosπ+1
4cos 2π+1
9cos 3π+1
16cos 4π+···)− 4 π(
sinπ+1
2sin 2π+1
3sin 3π+···)