FOURIER SERIES OVER ANY RANGE 677L
v(t)10− 8 − 4 0 4 8 12 t (ms)Period L = 8 msFigure 72.1
a 0 =1
L∫ L
2
−L
2v(t)dt=1
8∫ 4− 4v(t)dt=1
8{∫ 0− 40dt+∫ 4010 dt}
=1
8[10t]^40 = 5an=2
L∫ L
2
−L
2v(t) cos(
2 πnt
L)
dt=2
8∫ 4− 4v(t) cos(
2 πnt
8)
dt=1
4{∫ 0− 40 cos(
πnt
4)
dt+∫ 4010 cos(
πnt
4)
dt}=1
4⎡⎢
⎢
⎣10 sin(
πnt
4)(πn4)⎤⎥
⎥
⎦40=10
πn[ sinπn−sin 0]=0 forn=1, 2, 3,...bn=2
L∫ L
2
−L
2v(t) sin(
2 πnt
L)
dt=2
8∫ 4− 4v(t) sin(
2 πnt
8)
dt=1
4{∫ 0− 40 sin(
πnt
4)
dt+∫ 4010 sin(
πnt
4)
dt}=1
4⎡⎢
⎢
⎣−10 cos(
πnt
4)(πn4)⎤⎥
⎥
⎦40=− 10
πn[cosπn−cos 0]Whennis even,bn= 0Whennis odd,b 1 =− 10
π(− 1 −1)=20
π,b 3 =− 10
3 π(− 1 −1)=20
3 π,b 5 =20
5 π, and so on.Thus the Fourier series for the functionv(t)is
given by:v(t)= 5 +20
π[
sin(
πt
4)
+1
3sin(
3 πt
4)+1
5sin(
5 πt
4)
+ ···]Problem 2. Obtain the Fourier series for the
function defined by:f(x)=⎧
⎨⎩0, when − 2 <x<− 1
5, when − 1 <x< 1
0, when 1 <x< 2The function is periodic outside of this range of
period 4.The functionf(x) is shown in Fig. 72.2 where period,
L=4. Since the function is symmetrical about the
f(x) axis it is an even function and the Fourier series
contains no sine terms (i.e.bn=0).− 4 − 3 − 2 − 1012345L = 4f(x)
5− 5 xFigure 72.2Thus, from para. (c),f(x)=a 0 +∑∞n= 1ancos(
2 πnx
L)a 0 =1
L∫L
2
−L
2f(x)dx=1
4∫ 2− 2f(x)dx