Higher Engineering Mathematics

(Greg DeLong) #1
694 FOURIER SERIES

From equation (2),

cn=

(
cos 2πn−jsin 2πn
−j 2 πn


cos 2πn−jsin 2πn
(−j 2 πn)^2

)

+

1
(−j 2 πn)^2

However, cos 2πn=1 and sin 2πn=0 for all posi-
tive and negative integer values ofn.

Thus,cn=


1
−j 2 πn


1
(−j 2 πn)^2

+

1
(−j 2 πn)^2

=

1
−j 2 πn

=

1(j)
−j 2 πn(j)

i.e. cn=

j
2 πn
From equation (13),

c 0 =a 0 =

1
L

∫L
2

−L 2

f(t)dt

=

1
L

∫L

0

f(t)dt=

1
1

∫ 1

0

tdt

=

[
t^2
2

] 1

0

=

[
1
2

− 0

]
=

1
2

Hence, the complex Fourier series is given by:

f(t)=

∑∞

n=−∞

cnej

2 πnt
L from equation (11)

i.e. f(t)=

1
2

+

∑∞

n=−∞

j
2 πn

ej^2 πnt

=

1
2

+

j
2 π

∑∞

n=−∞

ej^2 πnt
n

Problem 3. Show that the exponential form of
the Fourier series for the waveform described
by:

f(x)=

{
0 when− 4 ≤x≤ 0
10 when 0 ≤x≤ 4

and has a period of 8, is given by:

f(x)=

∑∞

n=−∞

5 j

(cosnπ− 1 )ej

nπx
4

From equation (12),

cn=

1
L

∫L
2

−L 2

f(x)e−j

2 πnx
L dx

=

1
8

[∫ 0

− 4

0e−j

πnx

(^4) dx+
∫ 4
0
10 e−j
πnx
(^4) dx
]


10
8
[
e−j
πnt
4
−jπ 4 n
] 4
0


10
8
(
4
−jπn
)
[
e−jπn− 1
]


5 j
−j^2 πn
(
e−jπn− 1
)


5 j
πn
(
e−jπn− 1
)
From equation (2), e−jθ=cosθ−jsinθ, thus
e−jπn=cosπn−jsinπn=cosπn for all integer
values ofn. Hence,
cn=
5 j
πn
(
e−jπn− 1
)


5 j
πn
(cosnπ− 1 )
From equation (11), the exponential Fourier series
is given by:
f(x)=
∑∞
n=−∞
cnej
2 πnx
L


∑∞
n=−∞
5 j

(cosnπ−1) ej
nπx
4
Now try the following exercise.
Exercise 248 Further problems on the com-
plex form of a Fourier series



  1. Determine the complex Fourier series for the
    function defined by:


f(t)=

{
0, when −π≤t≤ 0
2, when 0 ≤t≤π
The function is periodic outside of this range
of period 2π.
[

f(t)=

∑∞

n=−∞

j

(cosnπ− 1 )ejnt

= 1 −j

2
π

(
ejt+

1
3

ej^3 t+

1
5

ej^5 t+...

)

+j

2
π

(
e−jt+

1
3

e−j^3 t+

1
5

e−j^5 t+···

)]
Free download pdf