694 FOURIER SERIES
From equation (2),
cn=
(
cos 2πn−jsin 2πn
−j 2 πn
−
cos 2πn−jsin 2πn
(−j 2 πn)^2
)
+
1
(−j 2 πn)^2
However, cos 2πn=1 and sin 2πn=0 for all posi-
tive and negative integer values ofn.
Thus,cn=
1
−j 2 πn
−
1
(−j 2 πn)^2
+
1
(−j 2 πn)^2
=
1
−j 2 πn
=
1(j)
−j 2 πn(j)
i.e. cn=
j
2 πn
From equation (13),
c 0 =a 0 =
1
L
∫L
2
−L 2
f(t)dt
=
1
L
∫L
0
f(t)dt=
1
1
∫ 1
0
tdt
=
[
t^2
2
] 1
0
=
[
1
2
− 0
]
=
1
2
Hence, the complex Fourier series is given by:
f(t)=
∑∞
n=−∞
cnej
2 πnt
L from equation (11)
i.e. f(t)=
1
2
+
∑∞
n=−∞
j
2 πn
ej^2 πnt
=
1
2
+
j
2 π
∑∞
n=−∞
ej^2 πnt
n
Problem 3. Show that the exponential form of
the Fourier series for the waveform described
by:
f(x)=
{
0 when− 4 ≤x≤ 0
10 when 0 ≤x≤ 4
and has a period of 8, is given by:
f(x)=
∑∞
n=−∞
5 j
nπ
(cosnπ− 1 )ej
nπx
4
From equation (12),
cn=
1
L
∫L
2
−L 2
f(x)e−j
2 πnx
L dx
=
1
8
[∫ 0
− 4
0e−j
πnx
(^4) dx+
∫ 4
0
10 e−j
πnx
(^4) dx
]
10
8
[
e−j
πnt
4
−jπ 4 n
] 4
0
10
8
(
4
−jπn
)
[
e−jπn− 1
]
5 j
−j^2 πn
(
e−jπn− 1
)
5 j
πn
(
e−jπn− 1
)
From equation (2), e−jθ=cosθ−jsinθ, thus
e−jπn=cosπn−jsinπn=cosπn for all integer
values ofn. Hence,
cn=
5 j
πn
(
e−jπn− 1
)
5 j
πn
(cosnπ− 1 )
From equation (11), the exponential Fourier series
is given by:
f(x)=
∑∞
n=−∞
cnej
2 πnx
L
∑∞
n=−∞
5 j
nπ
(cosnπ−1) ej
nπx
4
Now try the following exercise.
Exercise 248 Further problems on the com-
plex form of a Fourier series
- Determine the complex Fourier series for the
function defined by:
f(t)=
{
0, when −π≤t≤ 0
2, when 0 ≤t≤π
The function is periodic outside of this range
of period 2π.
[
f(t)=
∑∞
n=−∞
j
nπ
(cosnπ− 1 )ejnt
= 1 −j
2
π
(
ejt+
1
3
ej^3 t+
1
5
ej^5 t+...
)
+j
2
π
(
e−jt+
1
3
e−j^3 t+
1
5
e−j^5 t+···
)]