Ess-For-H8152.tex 19/7/2006 18: 2 Page 705
Essential formulae
Number and Algebra
Laws of indices:
am×an=am+n
am
an
=am−n (am)n=amn
a
m
n = n
√
am a−n=
1
an
a^0 = 1
Quadratic formula:
If ax^2 +bx+c=0 thenx=
−b±
√
b^2 − 4 ac
2 a
Factor theorem
If x=ais a root of the equation f(x)=0, then
(x−a) is a factor off(x).
Remainder theorem
If (ax^2 +bx+c) is divided by (x−p), the
remainder will be:ap^2 +bp+c.
or if (ax^3 +bx^2 +cx+d) is divided by (x−p), the
remainder will be:ap^3 +bp^2 +cp+d.
Partial fractions
Provided that the numeratorf(x) is of less degree
than the relevant denominator, the following iden-
tities are typical examples of the form of partial
fractions used:
f(x)
(x+a)(x+b)(x+c)
≡
A
(x+a)
+
B
(x+b)
+
C
(x+c)
f(x)
(x+a)^3 (x+b)
≡
A
(x+a)
+
B
(x+a)^2
+
C
(x+a)^3
+
D
(x+b)
f(x)
(ax^2 +bx+c)(x+d)
≡
Ax+B
(ax^2 +bx+c)
+
C
(x+d)
Definition of a logarithm:
Ify=axthenx=logay
Laws of logarithms:
log (A×B)=logA+logB
log
(
A
B
)
=logA−logB
logAn=n×logA
Exponential series:
ex= 1 +x+
x^2
2!
+
x^3
3!
+···
(valid for all values ofx)
Hyperbolic functions
sinhx=
ex−e−x
2
cosechx=
1
sinhx
=
2
ex−e−x
coshx=
ex+e−x
2
sechx=
1
coshx
=
2
ex+e−x
tanhx=
ex−e−x
ex+e−x
cothx=
1
tanhx
=
ex+e−x
ex−e−x
cosh^2 x−sinh^2 = 11 −tanh^2 x=sech^2 x
coth^2 x− 1 = cosech^2 x