Higher Engineering Mathematics

(Greg DeLong) #1

Ess-For-H8152.tex 19/7/2006 18: 2 Page 705


Essential formulae


Number and Algebra


Laws of indices:

am×an=am+n

am
an

=am−n (am)n=amn

a

m
n = n


am a−n=

1
an

a^0 = 1

Quadratic formula:

If ax^2 +bx+c=0 thenx=

−b±


b^2 − 4 ac
2 a

Factor theorem

If x=ais a root of the equation f(x)=0, then
(x−a) is a factor off(x).

Remainder theorem

If (ax^2 +bx+c) is divided by (x−p), the
remainder will be:ap^2 +bp+c.

or if (ax^3 +bx^2 +cx+d) is divided by (x−p), the
remainder will be:ap^3 +bp^2 +cp+d.

Partial fractions

Provided that the numeratorf(x) is of less degree
than the relevant denominator, the following iden-
tities are typical examples of the form of partial
fractions used:

f(x)
(x+a)(x+b)(x+c)


A
(x+a)

+

B
(x+b)

+

C
(x+c)

f(x)
(x+a)^3 (x+b)


A
(x+a)

+

B
(x+a)^2

+

C
(x+a)^3

+

D
(x+b)

f(x)
(ax^2 +bx+c)(x+d)


Ax+B
(ax^2 +bx+c)

+

C
(x+d)

Definition of a logarithm:

Ify=axthenx=logay

Laws of logarithms:

log (A×B)=logA+logB

log

(
A
B

)
=logA−logB

logAn=n×logA

Exponential series:

ex= 1 +x+

x^2
2!

+

x^3
3!

+···

(valid for all values ofx)

Hyperbolic functions

sinhx=

ex−e−x
2

cosechx=

1
sinhx

=

2
ex−e−x

coshx=

ex+e−x
2

sechx=

1
coshx

=

2
ex+e−x

tanhx=

ex−e−x
ex+e−x

cothx=

1
tanhx

=

ex+e−x
ex−e−x

cosh^2 x−sinh^2 = 11 −tanh^2 x=sech^2 x

coth^2 x− 1 = cosech^2 x
Free download pdf