Ess-For-H8152.tex 19/7/2006 18: 2 Page 711
ESSENTIAL FORMULAE 711
Tangents and normals
Equation of tangent to curvey=f(x) at the point
(x 1 ,y 1 ) is:
y−y 1 =m(x−x 1 )
wherem=gradient of curve at (x 1 ,y 1 ).
Equation of normal to curvey=f(x) at the point
(x 1 ,y 1 ) is:
y−y 1 =−
1
m
(x−x 1 )
Partial differentiation
Total differential
Ifz=f(u,v,..), then the total differential,
dz=
∂z
∂u
du+
∂z
∂v
dv+....
Rate of change
Ifz=f(u,v,..) and
du
dt
,
dv
dt
, ... denote the rate of
change ofu,v, .. respectively, then the rate of change
ofz,
dz
dt
=
∂z
∂u
·
du
dt
+
∂z
∂v
·
dv
dt
+...
Small changes
Ifz=f(u,v,..) andδx,δy, .. denote small changes in
x,y, .. respectively, then the corresponding change,
δz≈
∂z
∂x
δx+
∂z
∂y
δy+....
To determine maxima, minima and saddle
points for functions of two variables: Given
z=f(x,y),
(i) determine
∂z
∂x
and
∂z
∂y
(ii) for stationary points,
∂z
∂x
=0 and
∂z
∂y
=0,
(iii) solve the simultaneous equations
∂z
∂x
= 0
and
∂z
∂y
=0 for x and y, which gives the
co-ordinates of the stationary points,
(iv) determine
∂^2 z
∂x^2
,
∂^2 z
∂y^2
and
∂^2 z
∂x∂y
(v) for each of the co-ordinates of the station-
ary points, substitute values ofxandyinto
∂^2 z
∂x^2
,
∂^2 z
∂y^2
and
∂^2 z
∂x∂y
and evaluate each,
(vi) evaluate
(
∂^2 z
∂x∂y
) 2
for each stationary point,
(vii) substitute the values of
∂^2 z
∂x^2
,
∂^2 z
∂y^2
and
∂^2 z
∂x∂y
into
the equation=
(
∂^2 z
∂x∂y
) 2
−
(
∂^2 z
∂x^2
)(
∂^2 z
∂y^2
)
and evaluate,
(viii) (a) if
> 0 then the stationary point is asaddle
point
(b) if
< 0 and
∂^2 z
∂x^2
< 0 , then the stationary
point is amaximum point, and
(c) if
< 0 and
∂^2 z
∂x^2
> 0 , then the stationary
point is aminimum point