Ess-For-H8152.tex 19/7/2006 18: 2 Page 717
ESSENTIAL FORMULAE 717
Leibniz’s theorem
To find then’th derivative of a producty=uv:
y(n)=(uv)(n)=u(n)v+nu(n−1)v(1)
+
n(n−1)
2!
u(n−2)v(2)
+
n(n−1)(n−2)
3!
u(n−3)v(3)+···
Power series solutions of second order differential
equations.
(a)Leibniz-Maclaurin method
(i) Differentiate the given equationntimes,
using the Leibniz theorem,
(ii) rearrange the result to obtain the recurrence
relation atx=0,
(iii) determine the values of the derivatives at
x=0, i.e. find (y) 0 and (y′) 0 ,
(iv) substitute in the Maclaurin expansion for
y=f(x),
(v) simplify the result where possible and apply
boundary condition (if given).
(b)Frobenius method
(i) Assume a trial solution of the form:
y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 + ··· +
arxr+ ···} a 0 =0,
(ii) differentiate the trial series to find y′
andy′′,
(iii) substitute the results in the given differential
equation,
(iv) equate coefficients of corresponding pow-
ers of the variable on each side of the
equation: this enables indexcand coeffi-
cientsa 1 ,a 2 ,a 3 ,...from the trial solution,
to be determined.
Bessel’s equation
The solution ofx^2
d^2 y
dx^2
+x
dy
dx
+(x^2 −v^2 )y= 0
is:
y=Axv
{
1 −
x^2
22 (v+1)
+
x^4
24 × 2 !(v+1)(v+2)
−
x^6
26 × 3 !(v+1)(v+2)(v+3)
+···
}
+Bx−v
{
1 +
x^2
22 (v−1)
+
x^4
24 × 2 !(v−1)(v−2)
+
x^6
26 × 3 !(v−1)(v−2)(v−3)
+···
}
or, in terms of Bessel functions and gamma
functions:
y=AJv(x)+BJ−v(x)
=A
(x
2
)v{ 1
(v+1)
−
x^2
22 (1!)(v+2)
+
x^4
24 (2!)(v+4)
−···
}
+B
(x
2
)−v{ 1
(1−v)
−
x^2
22 (1!)(2−v)
+
x^4
24 (2!)(3−v)
−···
}
In general terms:
Jv(x)=
(x
2
)v∑∞
k= 0
(−1)kx^2 k
22 k(k!)(v+k+1)
and J−v(x)=
(x
2
)−v∑∞
k= 0
(−1)kx^2 k
22 k(k!)(k−v+1)
and in particular:
Jn(x)=
(x
2
)n{ 1
n!
−
1
(n+1)!
(x
2
) 2
+
1
(2!)(n+2)!
(x
2
) 4
−···
}