Ess-For-H8152.tex 19/7/2006 18: 2 Page 717
ESSENTIAL FORMULAE 717Leibniz’s theoremTo find then’th derivative of a producty=uv:y(n)=(uv)(n)=u(n)v+nu(n−1)v(1)+n(n−1)
2!u(n−2)v(2)+n(n−1)(n−2)
3!u(n−3)v(3)+···Power series solutions of second order differential
equations.(a)Leibniz-Maclaurin method
(i) Differentiate the given equationntimes,
using the Leibniz theorem,
(ii) rearrange the result to obtain the recurrence
relation atx=0,
(iii) determine the values of the derivatives at
x=0, i.e. find (y) 0 and (y′) 0 ,
(iv) substitute in the Maclaurin expansion for
y=f(x),(v) simplify the result where possible and apply
boundary condition (if given).
(b)Frobenius method(i) Assume a trial solution of the form:
y=xc{a 0 +a 1 x+a 2 x^2 +a 3 x^3 + ··· +
arxr+ ···} a 0 =0,(ii) differentiate the trial series to find y′
andy′′,(iii) substitute the results in the given differential
equation,(iv) equate coefficients of corresponding pow-
ers of the variable on each side of the
equation: this enables indexcand coeffi-
cientsa 1 ,a 2 ,a 3 ,...from the trial solution,
to be determined.Bessel’s equationThe solution ofx^2d^2 y
dx^2+xdy
dx+(x^2 −v^2 )y= 0is:y=Axv{
1 −x^2
22 (v+1)+x^4
24 × 2 !(v+1)(v+2)−x^6
26 × 3 !(v+1)(v+2)(v+3)+···}+Bx−v{
1 +x^2
22 (v−1)+x^4
24 × 2 !(v−1)(v−2)+x^6
26 × 3 !(v−1)(v−2)(v−3)+···}or, in terms of Bessel functions and gamma
functions:y=AJv(x)+BJ−v(x)=A(x2)v{ 1(v+1)−x^2
22 (1!)(v+2)+x^4
24 (2!)(v+4)−···}+B(x2)−v{ 1(1−v)−x^2
22 (1!)(2−v)+x^4
24 (2!)(3−v)−···}In general terms:Jv(x)=(x2)v∑∞k= 0(−1)kx^2 k
22 k(k!)(v+k+1)and J−v(x)=(x2)−v∑∞k= 0(−1)kx^2 k
22 k(k!)(k−v+1)and in particular:Jn(x)=(x2)n{ 1n!−1
(n+1)!(x2) 2+1
(2!)(n+2)!(x2) 4
−···}