Ess-For-H8152.tex 19/7/2006 18: 2 Page 718
718 ESSENTIAL FORMULAEJ 0 (x)= 1 −x^2
22 (1!)^2+x^4
24 (2!)^2−x^6
26 (3!)^2+···and J 1 (x)=x
2−x^3
23 (1!)(2!)+x^5
25 (2!)(3!)−x^7
27 (3!)(4!)+···Legendre’s equationThe solution of (1−x^2 )d^2 y
dx^2− 2 xdy
dx+k(k+1)y= 0is:
y=a 0{
1 −k(k+1)
2!x^2+k(k+1)(k−2)(k+3)
4!x^4 −···}+a 1{
x−(k−1)(k+2)
3!x^3+(k−1)(k−3)(k+2)(k+4)
5!x^5 −···}Rodrigue’s formulaPn(x)=1
2 nn!dn(x^2 −1)n
dxnStatistics and Probability
Mean, median, mode and standard deviationIfx=variate andf=frequency then:mean ̄x=∑
fx
∑
f
Themedianis the middle term of a ranked set of
data.
Themodeis the most commonly occurring value in
a set of data.
Standard deviationσ=√
√
√
√[∑{
f(x− ̄x)^2}
∑
f]for a populationBinomial probability distributionIf n=number in sample, p=probability of the
occurrence of an event and q= 1 −p, then the
probability of 0, 1, 2, 3,...occurrences is given by:qn, nqn−^1 p,n(n−1)
2!qn−^2 p^2 ,n(n−1)(n−2)
3!qn−^3 p^3 ,...(i.e. successive terms of the (q+p)nexpansion).Normal approximation to a binomial distribution:Mean=np Standard deviationσ=√
(npq)Poisson distributionIfλis the expectation of the occurrence of an event
then the probability of 0, 1, 2, 3,...occurrences is
given by:e−λ, λe−λ, λ^2e−λ
2!, λ^3e−λ
3!,...Product-moment formula for the linear correlation
coefficientCoefficient of correlationr=∑
xy
√[(∑
x^2)(∑
y^2)]where x=X−X and y=Y−Y and (X 1 ,Y 1 ),
(X 2 ,Y 2 ),...denote a random sample from a bivari-
ate normal distribution andXandYare the means
of theXandYvalues respectively.Normal probability distributionPartial areas under the standardized normal curve —
see Table 58.1 on page 561.Student’stdistributionPercentile values (tp) for Student’stdistribution with
νdegrees of freedom — see Table 61.2 on page 587.