Higher Engineering Mathematics

(Greg DeLong) #1
68 NUMBER AND ALGEBRA

on; thus cosxmeets this condition. However,
iff(x)=lnx,f′(0)=^10 =∞, thus lnxdoes not
meet this condition.
(c)The resultant Maclaurin’s series must be
convergent
In general, this means that the values of the
terms, or groups of terms, must get progres-
sively smaller and the sum of the terms must
reach a limiting value.

For example, the series 1+^12 +^14 +^18 + ···is
convergent since the value of the terms is getting
smaller and the sum of the terms is approaching
a limiting value of 2.

8.4 Worked problems on Maclaurin’s


series


Problem 1. Determine the first four terms of
the power series for cosx.

The values of f(0), f′(0), f′′(0),... in the
Maclaurin’s series are obtained as follows:


f(x)=cosxf(0)=cos 0= 1

f′(x)=−sinxf′(0)=−sin 0= 0

f′′(x)=−cosxf′′(0)=−cos 0=− 1

f′′′(x)=sinxf′′′(0)=sin 0= 0

fiv(x)=cosxfiv(0)=cos 0= 1

fv(x)=−sinxfv(0)=−sin 0= 0

fvi(x)=−cosxfvi(0)=−cos 0=− 1

Substituting these values into equation (5) gives:

f(x)=cosx= 1 +x(0)+

x^2
2!

(−1)+

x^3
3!

(0)

+

x^4
4!

(1)+

x^5
5!

(0)+

x^6
6!

(−1)+···

i.e. cosx= 1 −

x^2
2!

+

x^4
4!


x^6
6!

+···

Problem 2. Determine the power series for
cos 2θ.

Replacingxwith 2θin the series obtained in Prob-
lem 1 gives:

cos 2θ= 1 −

(2θ)^2
2!

+

(2θ)^4
4!


(2θ)^6
6!

+···

= 1 −

4 θ^2
2

+

16 θ^4
24


64 θ^6
720

+···

i.e.cos 2θ= 1 − 2 θ^2 +

2
3

θ^4 −

4
45

θ^6 +···

Problem 3. Determine the power series for
tanxas far as the term inx^3.

f(x)=tanx
f(0)=tan 0= 0
f′(x)=sec^2 x

f′(0)=sec^20 =

1
cos^20

= 1

f′′(x)=(2 secx)( secxtanx)

=2 sec^2 xtanx

f′′(0)=2 sec^2 0 tan 0= 0

f′′′(x)=(2 sec^2 x)( sec^2 x)

+(tanx)(4 secxsecxtanx),
by the product rule,

=2 sec^4 x+4 sec^2 xtan^2 x

f′′′(0)=2 sec^40 +4 sec^2 0 tan^20 = 2
Substituting these values into equation (5) gives:

f(x)=tanx= 0 +(x)(1)+

x^2
2!

(0)+

x^3
3!

(2)

i.e. tanx=x+

1
3

x^3

Problem 4. Expand ln (1+x) to five terms.

f(x)=ln (1+x) f(0)=ln (1+0)= 0

f′(x)=

1
(1+x)

f′(0)=

1
1 + 0

= 1

f′′(x)=

− 1
(1+x)^2

f′′(0)=

− 1
(1+0)^2

=− 1

f′′′(x)=

2
(1+x)^3

f′′′(0)=

2
(1+0)^3

= 2
Free download pdf