MACLAURIN’S SERIES 69
A
fiv(x)=
− 6
(1+x)^4
fiv(0)=
− 6
(1+0)^4
=− 6
fv(x)=
24
(1+x)^5
fv(0)=
24
(1+0)^5
= 24
Substituting these values into equation (5) gives:
f(x)=ln (1+x)= 0 +x(1)+
x^2
2!
(−1)
+
x^3
3!
(2)+
x^4
4!
(−6)+
x^5
5!
(24)
i.e.ln( 1 +x)=x−
x^2
2
+
x^3
3
−
x^4
4
+
x^5
5
−···
Problem 5. Expand ln (1−x) to five terms.
Replacingxby−xin the series for ln (1+x)in
Problem 4 gives:
ln (1−x)=(−x)−
(−x)^2
2
+
(−x)^3
3
−
(−x)^4
4
+
(−x)^5
5
−···
i.e.ln(1−x)=−x−
x^2
2
−
x^3
3
−
x^4
4
−
x^5
5
−···
Problem 6. Determine the power series for
ln
(
1 +x
1 −x
)
.
ln
(
1 +x
1 −x
)
=ln (1+x)−ln (1−x) by the laws of
logarithms, and from Problems 4 and 5,
ln
(
1 +x
1 −x
)
=
(
x−
x^2
2
+
x^3
3
−
x^4
4
+
x^5
5
−···
)
−
(
−x−
x^2
2
−
x^3
3
−
x^4
4
−
x^5
5
−···
)
= 2 x+
2
3
x^3 +
2
5
x^5 +···
i.e.ln
(
1 +x
1 −x
)
= 2
(
x+
x^3
3
+
x^5
5
+ ···
)
Problem 7. Use Maclaurin’s series to find the
expansion of (2+x)^4.
f(x)=(2+x)^4 f(0)= 24 = 16
f′(x)=4(2+x)^3 f′(0)=4(2)^3 = 32
f′′(x)=12(2+x)^2 f′′(0)=12(2)^2 = 48
f′′′(x)=24(2+x)^1 f′′′(0)=24(2)= 48
fiv(x)= 24 fiv(0)= 24
Substituting in equation (5) gives:
( 2 +x)^4
=f(0)+xf′(0)+
x^2
2!
f′′(0)+
x^3
3!
f′′′(0)+
x^4
4!
fiv(0)
= 16 +(x)(32)+
x^2
2!
(48)+
x^3
3!
(48)+
x^4
4!
(24)
= 16 + 32 x+ 24 x^2 + 8 x^3 +x^4
(This expression could have been obtained by apply-
ing the binomial theorem.)
Problem 8. Expand e
x
(^2) as far as the term inx^4.
f(x)=e
x
(^2) f(0)=e^0 = 1
f′(x)=
1
2
e
x
(^2) f′(0)=
1
2
e^0 =
1
2
f′′(x)=
1
4
e
x
(^2) f′′(0)=
1
4
e^0 =
1
4
f′′′(x)=
1
8
e
x
(^2) f′′′(0)=
1
8
e^0 =
1
8
fiv(x)=
1
16
e
x
(^2) fiv(0)=
1
16
e^0 =
1
16
Substituting in equation (5) gives:
e
x
(^2) =f(0)+xf′(0)+x
2
2!
f′′(0)
- x^3
3!
f′′′(0)+
x^4
4!
fiv(0)+···
= 1 +(x)
(
1
2
)
x^2
2!
(
1
4
)
x^3
3!
(
1
8
)
x^4
4!
(
1
16
)
+···
i.e. e
x
(^2) = 1 +
1
2
x+
1
8
x^2 +
1
48
x^3 +
1
384
x^4 +···