Higher Engineering Mathematics

(Greg DeLong) #1

70 NUMBER AND ALGEBRA


Problem 9. Develop a series for sinhxusing
Maclaurin’s series.

f(x)=sinhxf(0)=sinh 0=

e^0 −e−^0
2

= 0

f′(x)=coshxf′(0)=cosh 0=

e^0 +e−^0
2

= 1

f′′(x)=sinhxf′′(0)=sinh 0= 0

f′′′(x)=coshxf′′′(0)=cosh 0= 1


fiv(x)=sinhxfiv(0)=sinh 0= 0


fv(x)=coshxfv(0)=cosh 0= 1

Substituting in equation (5) gives:


sinhx=f(0)+xf′(0)+

x^2
2!

f′′(0)+

x^3
3!

f′′′(0)

+

x^4
4!

fiv(0)+

x^5
5!

fv(0)+···

= 0 +(x)(1)+

x^2
2!

(0)+

x^3
3!

(1)+

x^4
4!

(0)

+

x^5
5!

(1)+···

i.e.sinhx=x+


x^3
3!

+

x^5
5!

+···

(as obtained in Section 5.5)

Problem 10. Produce a power series for
cos^22 xas far as the term inx^6.

From double angle formulae, cos 2A=2 cos^2 A− 1
(see Chapter 18).


from which, cos^2 A=


1
2

(1+cos 2A)

and cos^22 x=


1
2

(1+cos 4x)

From Problem 1,


cosx= 1 −

x^2
2!

+

x^4
4!


x^6
6!

+···

hence cos 4x= 1 −


(4x)^2
2!

+

(4x)^4
4!


(4x)^6
6!

+···

= 1 − 8 x^2 +

32
3

x^4 −

256
45

x^6 +···

Thus cos^22 x=

1
2

(1+cos 4x)

=

1
2

(
1 + 1 − 8 x^2 +

32
3

x^4 −

256
45

x^6 +···

)

i.e. cos^22 x= 1 − 4 x^2 +

16
3

x^4 −

128
45

x^6 +···

Now try the following exercise.

Exercise 36 Further problems on
Maclaurin’s series


  1. Determine the first four terms of the power
    series for sin 2xusing Maclaurin’s series.




sin 2x= 2 x−

4
3

x^3 +

4
15

x^5


8
315

x^7 +···





  1. Use Maclaurin’s series to produce a power
    series for cosh 3xas far as the term inx^6.
    [
    1 +


9
2

x^2 +

27
8

x^4 +

81
80

x^6

]


  1. Use Maclaurin’s theorem to determine the
    first three terms of the power series for


ln (1+ex).

[
ln 2+

x
2

+

x^2
8

]


  1. Determine the power series for cos 4tas far
    as the term int^6.
    [
    1 − 8 t^2 +


32
3

t^4 −

256
45

t^6

]


  1. Expand e


3
2 xin a power series as far as the

term inx^3.

[
1 +

3
2

x+

9
8

x^2 +

9
16

x^3

]


  1. Develop, as far as the term inx^4 , the power


series for sec 2x.

[
1 + 2 x^2 +

10
3

x^4

]


  1. Expand e^2 θcos 3θas far as the term inθ^2


using Maclaurin’s series.

[
1 + 2 θ−

5
2

θ^2

]


  1. Determine the first three terms of the series
    for sin^2 xby applying Maclaurin’s theorem.
    [
    x^2 −


1
3

x^4 +

2
45

x^6 ···

]
Free download pdf