70 NUMBER AND ALGEBRA
Problem 9. Develop a series for sinhxusing
Maclaurin’s series.
f(x)=sinhxf(0)=sinh 0=
e^0 −e−^0
2
= 0
f′(x)=coshxf′(0)=cosh 0=
e^0 +e−^0
2
= 1
f′′(x)=sinhxf′′(0)=sinh 0= 0
f′′′(x)=coshxf′′′(0)=cosh 0= 1
fiv(x)=sinhxfiv(0)=sinh 0= 0
fv(x)=coshxfv(0)=cosh 0= 1
Substituting in equation (5) gives:
sinhx=f(0)+xf′(0)+
x^2
2!
f′′(0)+
x^3
3!
f′′′(0)
+
x^4
4!
fiv(0)+
x^5
5!
fv(0)+···
= 0 +(x)(1)+
x^2
2!
(0)+
x^3
3!
(1)+
x^4
4!
(0)
+
x^5
5!
(1)+···
i.e.sinhx=x+
x^3
3!
+
x^5
5!
+···
(as obtained in Section 5.5)
Problem 10. Produce a power series for
cos^22 xas far as the term inx^6.
From double angle formulae, cos 2A=2 cos^2 A− 1
(see Chapter 18).
from which, cos^2 A=
1
2
(1+cos 2A)
and cos^22 x=
1
2
(1+cos 4x)
From Problem 1,
cosx= 1 −
x^2
2!
+
x^4
4!
−
x^6
6!
+···
hence cos 4x= 1 −
(4x)^2
2!
+
(4x)^4
4!
−
(4x)^6
6!
+···
= 1 − 8 x^2 +
32
3
x^4 −
256
45
x^6 +···
Thus cos^22 x=
1
2
(1+cos 4x)
=
1
2
(
1 + 1 − 8 x^2 +
32
3
x^4 −
256
45
x^6 +···
)
i.e. cos^22 x= 1 − 4 x^2 +
16
3
x^4 −
128
45
x^6 +···
Now try the following exercise.
Exercise 36 Further problems on
Maclaurin’s series
- Determine the first four terms of the power
series for sin 2xusing Maclaurin’s series.
⎡
⎢
⎣
sin 2x= 2 x−
4
3
x^3 +
4
15
x^5
−
8
315
x^7 +···
⎤
⎥
⎦
- Use Maclaurin’s series to produce a power
series for cosh 3xas far as the term inx^6.
[
1 +
9
2
x^2 +
27
8
x^4 +
81
80
x^6
]
- Use Maclaurin’s theorem to determine the
first three terms of the power series for
ln (1+ex).
[
ln 2+
x
2
+
x^2
8
]
- Determine the power series for cos 4tas far
as the term int^6.
[
1 − 8 t^2 +
32
3
t^4 −
256
45
t^6
]
- Expand e
3
2 xin a power series as far as the
term inx^3.
[
1 +
3
2
x+
9
8
x^2 +
9
16
x^3
]
- Develop, as far as the term inx^4 , the power
series for sec 2x.
[
1 + 2 x^2 +
10
3
x^4
]
- Expand e^2 θcos 3θas far as the term inθ^2
using Maclaurin’s series.
[
1 + 2 θ−
5
2
θ^2
]
- Determine the first three terms of the series
for sin^2 xby applying Maclaurin’s theorem.
[
x^2 −
1
3
x^4 +
2
45
x^6 ···
]