70 NUMBER AND ALGEBRA
Problem 9. Develop a series for sinhxusing
Maclaurin’s series.f(x)=sinhxf(0)=sinh 0=e^0 −e−^0
2= 0f′(x)=coshxf′(0)=cosh 0=e^0 +e−^0
2= 1f′′(x)=sinhxf′′(0)=sinh 0= 0f′′′(x)=coshxf′′′(0)=cosh 0= 1
fiv(x)=sinhxfiv(0)=sinh 0= 0
fv(x)=coshxfv(0)=cosh 0= 1Substituting in equation (5) gives:
sinhx=f(0)+xf′(0)+x^2
2!f′′(0)+x^3
3!f′′′(0)+x^4
4!fiv(0)+x^5
5!fv(0)+···= 0 +(x)(1)+x^2
2!(0)+x^3
3!(1)+x^4
4!(0)+x^5
5!(1)+···i.e.sinhx=x+
x^3
3!+x^5
5!+···(as obtained in Section 5.5)Problem 10. Produce a power series for
cos^22 xas far as the term inx^6.From double angle formulae, cos 2A=2 cos^2 A− 1
(see Chapter 18).
from which, cos^2 A=
1
2(1+cos 2A)and cos^22 x=
1
2(1+cos 4x)From Problem 1,
cosx= 1 −x^2
2!+x^4
4!−x^6
6!+···hence cos 4x= 1 −
(4x)^2
2!+(4x)^4
4!−(4x)^6
6!+···= 1 − 8 x^2 +32
3x^4 −256
45x^6 +···Thus cos^22 x=1
2(1+cos 4x)=1
2(
1 + 1 − 8 x^2 +32
3x^4 −256
45x^6 +···)i.e. cos^22 x= 1 − 4 x^2 +16
3x^4 −128
45x^6 +···Now try the following exercise.Exercise 36 Further problems on
Maclaurin’s series- Determine the first four terms of the power
series for sin 2xusing Maclaurin’s series.
⎡
⎢
⎣sin 2x= 2 x−4
3x^3 +4
15x^5−8
315x^7 +···⎤⎥
⎦- Use Maclaurin’s series to produce a power
series for cosh 3xas far as the term inx^6.
[
1 +
9
2x^2 +27
8x^4 +81
80x^6]- Use Maclaurin’s theorem to determine the
first three terms of the power series for
ln (1+ex).[
ln 2+x
2+x^2
8]- Determine the power series for cos 4tas far
as the term int^6.
[
1 − 8 t^2 +
32
3t^4 −256
45t^6]- Expand e
3
2 xin a power series as far as theterm inx^3.[
1 +3
2x+9
8x^2 +9
16x^3]- Develop, as far as the term inx^4 , the power
series for sec 2x.[
1 + 2 x^2 +10
3x^4]- Expand e^2 θcos 3θas far as the term inθ^2
using Maclaurin’s series.[
1 + 2 θ−5
2θ^2]- Determine the first three terms of the series
for sin^2 xby applying Maclaurin’s theorem.
[
x^2 −
1
3x^4 +2
45x^6 ···]