MACLAURIN’S SERIES 73
A
L’Hopital’s rulewill enable us to determine such
limits when the differential coefficients of the numer-
ator and denominator can be found.
L’Hopital’s rule states:
lim
x→a
{
f(x)
g(x)
}
=lim
x→a
{
f′(x)
g′(x)
}
providedg′(a)= 0
It can happen that lim
x→a
{
f′(x)
g′(x)
}
is still
0
0
; if so, the
numerator and denominator are differentiated again
(and again) until a non-zero value is obtained for the
denominator.
The following worked problems demonstrate how
L’Hopital’s rule is used. Refer to Chapter 27 for
methods of differentiation.
Problem 14. Determine lim
x→ 1
{
x^2 + 3 x− 4
x^2 − 7 x+ 6
}
The first step is to substitutex=1 into both numer-
ator and denominator. In this case we obtain^00 .Itis
only when we obtain such a result that we then use
L’Hopital’s rule. Hence applying L’Hopital’s rule,
lim
x→ 1
{
x^2 + 3 x− 4
x^2 − 7 x+ 6
}
=lim
x→ 1
{
2 x+ 3
2 x− 7
}
i.e.both numerator and
denominator have
been differentiated
=
5
− 5
=− 1
Problem 15. Determine lim
x→ 0
{
sinx−x
x^2
}
Substitutingx=0gives
lim
x→ 0
{
sinx−x
x^2
}
=
sin 0− 0
0
=
0
0
Applying L’Hopital’s rule gives
lim
x→ 0
{
sinx−x
x^2
}
=lim
x→ 0
{
cosx− 1
2 x
}
Substitutingx=0gives
cos 0− 1
0
=
1 − 1
0
=
0
0
again
Applying L’Hopital’s rule again gives
lim
x→ 0
{
cosx− 1
2 x
}
=lim
x→ 0
{
−sinx
2
}
= 0
Problem 16. Determine lim
x→ 0
{
x−sinx
x−tanx
}
Substitutingx=0gives
lim
x→ 0
{
x−sinx
x−tanx
}
=
0 −sin 0
0 −tan 0
=
0
0
Applying L’Hopital’s rule gives
lim
x→ 0
{
x−sinx
x−tanx
}
=lim
x→ 0
{
1 −cosx
1 −sec^2 x
}
Substitutingx=0gives
lim
x→ 0
{
1 −cosx
1 −sec^2 x
}
=
1 −cos 0
1 −sec^20
=
1 − 1
1 − 1
=
0
0
again
Applying L’Hopital’s rule gives
lim
x→ 0
{
1 −cosx
1 −sec^2 x
}
=lim
x→ 0
{
sinx
(−2 secx)(secxtanx)
}
=lim
x→ 0
{
sinx
−2 sec^2 xtanx
}
Substitutingx=0gives
sin 0
−2 sec^2 0 tan 0
=
0
0
again
Applying L’Hopital’s rule gives
lim
x→ 0
{
sinx
−2 sec^2 xtanx
}
=lim
x→ 0
⎧
⎪⎪
⎨
⎪⎪
⎩
cosx
(−2 sec^2 x)(sec^2 x)
+(tanx)(−4 sec^2 xtanx)
⎫
⎪⎪
⎬
⎪⎪
⎭
using the product rule
Substitutingx=0gives
cos 0
−2 sec^40 −4 sec^2 0 tan^20
=
1
− 2 − 0
=−
1
2