130_notes.dvi

(Frankie) #1
〈ψ|p|ψ〉 = −i


m ̄hω
2

〈√

2

3

u 0 −i


1

3

u 1 |A−A†|


2

3

u 0 −i


1

3

u 1


= −i


m ̄hω
2

〈√

2

3

u 0 −i


1

3

u 1 |−


2

3

u 1 −i


1

3

u 0


= −i


m ̄hω
2

(−i


2

9

−i


2

9

)

= −


8

9


m ̄hω
2

=

2

3


m ̄hω


  1. Assumingunrepresents thenth1D harmonic oscillator energy eigenstate, calculate〈un|p|um〉.
    Answer


p =


m ̄hω
2

A−A†

i

〈un|p|um〉 = −i


m ̄hω
2

〈un|A−A†|um〉

= −i


m ̄hω
2

(


mδn(m−1)−


m+ 1δn(m+1))


  1. Evaluate the “uncertainty” inxfor the 1D HO ground state



〈u 0 |(x− ̄x)^2 |u 0 〉where ̄x=
〈u 0 |x|u 0 〉. Similarly, evaluate the uncertainty inpfor the ground state. What is the product
∆p∆x?
Answer
Its easy to see that ̄x= 0 either from the integral or using operators. I’ll use operatorsto
compute the rest.

x =


̄h
2 mω

(A+A†)

〈u 0 |x^2 |u 0 〉 =

̄h
2 mω
〈u 0 |AA+AA†+A†A+A†A†)|u 0 〉

=

̄h
2 mω

〈u 0 |AA†|u 0 〉=

̄h
2 mω

1 =

̄h
2 mω

p =

1

i


m ̄hω
2

(A−A†)

〈u 0 |p^2 |u 0 〉 = −

m ̄hω
2

〈u 0 |−AA†|u 0 〉=

m ̄hω
2

∆x =


̄h
2 mω

∆p =


m ̄hω
2

∆p∆x =

̄h
2
Free download pdf