cosh^2χ
2−sinh^2χ
2=
1
4
((eχ 2
+e− 2 χ
)^2 −(eχ 2
−e− 2 χ
)^2 )=1
4
(eχ+ 2 +e−χ−eχ+ 2−e−χ) = 1
γ 1 coshχ+iγ 4 sinhχ = a 1 νγνaμν=
coshχ 0 0 isinhχ
0 1 0 0
0 0 1 0
−isinhχ 0 0 coshχ
γ 1 coshχ+iγ 4 sinhχ=γ 1 coshχ+iγ 4 sinhχThat checks forγ 1. Now, tryγ 4.
γ 4 cosh^2
χ
2
+iγ 4 γ 1 γ 4 coshχ
2
sinhχ
2
−iγ 1 γ 4 γ 4 coshχ
2
sinhχ
2
+γ 1 γ 4 γ 4 γ 1 γ 4 sinh^2χ
2
= a 4 νγνγ 4 cosh^2χ
2
−iγ 1 coshχ
2
sinhχ
2
−iγ 1 coshχ
2
sinhχ
2
+γ 4 sinh^2χ
2
= −isinhχγ 1 + coshχγ 4γ 4 cosh^2
χ
2− 2 iγ 1 cosh
χ
2sinh
χ
2+γ 4 sinh^2
χ
2= −isinhχγ 1 + coshχγ 4
γ 4 coshχ−iγ 1 sinhχ = −isinhχγ 1 + coshχγ 4That one also checks. As a last test, tryγ 2.
γ 2 cosh^2
χ
2+iγ 2 γ 1 γ 4 cosh
χ
2sinh
χ
2−iγ 1 γ 4 γ 2 cosh
χ
2sinh
χ
2+γ 1 γ 4 γ 2 γ 1 γ 4 sinh^2
χ
2= γ 2γ 2 cosh^2χ
2+iγ 2 γ 1 γ 4 coshχ
2sinhχ
2−iγ 2 γ 1 γ 4 coshχ
2sinhχ
2−γ 2 sinh^2χ
2= a 2 νγν
γ 2 = γ 2The Dirac equation is therefore shown to beinvariant under boosts along thexidirection if
we transform the Dirac spinor according toψ′=Sboostψwith the matrix
Sboost= coshχ
2+iγiγ 4 sinhχ
2and tanhχ=β.
The pure rotation about the z axis should also be verified.
(
cosθ
2+γ 1 γ 2 sinθ
2)− 1
γμ(
cosθ
2+γ 1 γ 2 sinθ
2)
= aμνγν
(
cosθ
2−γ 1 γ 2 sinθ
2)
γμ(
cosθ
2+γ 1 γ 2 sinθ
2)
= aμνγνγμcos^2θ
2+γμγ 1 γ 2 cosθ
2sinθ
2−γ 1 γ 2 γμcosθ
2sinθ
2−γ 1 γ 2 γμγ 1 γ 2 sin^2θ
2= aμνγν