130_notes.dvi

(Frankie) #1
ψ~p(1) =




coshχ 2 0 0 sinhχ 2
0 coshχ 2 sinhχ 2 0
0 sinhχ 2 coshχ 2 0
sinhχ 2 0 0 coshχ 2




1


V




1

0

0

0



eipρxρ/ ̄h

=

1


V




coshχ 2
0
0
sinhχ 2



eipρxρ/ ̄h

=

1


V

cosh

χ
2




1

0

0

tanhχ 2



eipρxρ/ ̄h

1 + coshχ
2

=

1 +e

χ+e−χ
2
2

=

eχ+ 2 +e−χ
4

=

(

e

χ

(^2) +e
−χ
2
2


) 2

= cosh^2

χ
2

cosh
χ
2

=


1 + coshχ
2

=


1 +γ
2

=


E+mc^2
2 mc^2

ψ~p(1) =

1


V


E+mc^2
2 mc^2




1

0

0

tanhχ 2



eipρxρ/ ̄h

=

1


γV′


E+mc^2
2 mc^2




1

0

0

tanhχ 2



eipρxρ/h ̄

=


E+mc^2
2 EV′




1

0

0

tanhχ 2



eipρxρ/ ̄h

In the last step the simple Lorentz contraction was used to setV′ = Vγ. Thisboosted state
matches the plane wave solution including the normalization.


36.10Parity


It is useful to understand theeffect of a parity inversion on a Dirac spinor. Again work with
the Dirac equation and its parity inverted form in whichxj→−xjandx 4 remains unchanged (the
same for the vector potential).


γμ


∂xμ

ψ(x) +

mc
̄h

ψ(x) = 0

γμ


∂x′μ

ψ′(x′) +

mc
̄h

ψ′(x′) = 0

ψ′(x′) = SPψ(x)

∂x′j

= −


∂xj
Free download pdf