ADDITION OF ANGULAR MOMENTUM
J~=~L+S~ |ℓ−s|≤j≤ℓ+s L~·S=^1
2 (J
(^2) −L (^2) −S (^2) )
ψjmjℓs=
∑
mℓms
C(jmj;ℓmℓsms)Yℓmℓχsms=
∑
mℓms
〈jmjℓs|ℓmℓsms〉Yℓmℓχsms
ψj,mj=ψℓ+^12 ,m+^12 =
√
ℓ+m+1
2 ℓ+1 Yℓmχ++
√
ℓ−m
2 ℓ+1Yℓ,m+1χ− fors=
1
2 and anyℓ
ψj,mj=ψℓ− (^12) ,m+ 12 =
√
ℓ−m
2 ℓ+1Yℓmχ+−
√
ℓ+m+1
2 ℓ+1 Yℓ,m+1χ− fors=
1
2 and anyℓ
PERTURBATION THEORY AND RADIATIVE DECAYS
En(1)=〈φn|H 1 |φn〉 En(2)=
∑
k 6 =n
|〈φk|H 1 |φn〉|^2
E(0)n−Ek(0) c
(1)
nk=
〈φk|H 1 |φn〉
E(0)n −E(0)k
cn(t) =i^1 h ̄
∫t
0
dt′ei(En−Ei)t
′/ ̄h
〈φn|V(t′)|φi〉
Fermi’s Golden Rule: Γi→f=^2 h ̄π|〈ψf|V|ψi〉|^2 ρf(E)
Γi→f=^2 ̄hπ
∫ ∏
k
(V d
(^3) pk
(2π ̄h)^3 )|Mfi|
(^2) δ (^3) (momentum conservation)δ(Energy conservation)
Γradm→k= 2 πmα (^2) c 2
∫
dΩpωkm|〈φm|e−i
~k·~r
ˆǫ·~p|φk〉|^2
ΓEm^1 →k= 2 πcα 2
∫
dΩpω^3 km|〈φm|ǫˆ·~r|φk〉|^2 ∆l=±1, ∆s= 0
ˆǫ·rˆ=
√
4 π
3 (ǫzY^10 +
−ǫx√+iǫy
2 Y^11 +
ǫx√+iǫy
2 Y^1 −^1 ) ˆǫ·
~k= 0
I(ω)∝(ω−ω 0 Γ) 2 /+(Γ^2 /2) 2 Γcollision=Pσ
√
3
mkT (
∆ω
ω)Dopler=
√
kT
mc^2
(ddσΩ)BORN= 4 π^12 h ̄ 4 ppifmfmi|V ̃(∆ )~ |^2 V ̃(∆ ) =~
∫
d^3 ~r e−i
∆~·~r
V(~r) ∆ =~ ~pf− ̄h~pi
ATOMS AND MOLECULES
Hund: 1) maxs 2)maxℓ(allowed) 3) minj(≤^12 shell) else maxj
Erot=ℓ(ℓ+1) ̄h
2
2 I ≈
1
2000 eV Evib= (n+
1
2 ) ̄hω≈
1
50 eV