284 ENGINEERING THERMODYNAMICS
dharm
/M-therm/th5-4.pm5
= 0.0209 × (0.718 + 0.287) × loge 300
1500
F
HG
I
KJ
= – 0.0338 kJ/K. (Ans.)
lConstant temperature (isothermal) process 3-1 :
p 3 = p 2 = 5 bar
Change in entropy,
S 1 – S 3 = mR loge
p
p
3
1
F
HG
I
KJ
= 0.0209 × 0.287 × loge
5
1
F
HG
I
KJ = 0.00965 kJ/K. (Ans.)
Example 5.38. Derive expressions for entropy change with variable specific heat.
Solution. Let us assume that the specific heats of a gas vary with temperature according
to the linear relations :
cp = a + kT, and cv = b + kT
where, a, b and k = Constants, and T = Temperature, K.
For unit mass of gas, Q = T ds = du + pdv
= cvdT + pdv
or, ds = c dT
T
pdv
T
c dT
T
Rdv
vvv
+= + (Q pv = RT)
Now, R = cp – cv = (a + kT) – (b + kT) = a – b
∴ ds = (b + kT) dT
T
abdv
v
+−()
This is the differential form of entropy change.
Integrating both sides between limits 1 and 2, we get
s 2 – s 1 = b loge
T
T
2
1
F
HG
I
KJ
+ k(T 2 – T 1 ) + (a – b) loge
v
v
2
1
F
HG
I
KJ
...(1)
For the entropy change the following expressions can be obtained by suitable manipulations
to eqn. ( 1 ) :
- Expression for entropy change in terms of temperature only :
T
T
v
v
n
2
1
1
2
1
=
F
HG
I
KJ
−
or, logeeT ( ) log ( ) loge
T
n v
v
n v
v
2
1
1
2
2
1
=− 11
F
HG
I
KJ
=− −
F
HG
I
KJ
∴ s 2 – s 1 = b T
T
kT T ab
n
T
eeT
log^2 ( ) log
1
21 2
(^11)
F
HG
I
KJ
+−−−
−
F
HG
I
KJ
F
HG
I
KJ
...[From eqn. (1)]
or, s 2 – s 1 = b
ab
n
T
T
− − e kT T
−
F
HG
I
KJ
F
HG
I
KJ
+−
1
2
1
log ( 21 ) ...(i)