TITLE.PM5

(Ann) #1

SECOND LAW OF THERMODYNAMICS AND ENTROPY 285


dharm
/M-therm/th5-4.pm5



  1. Expression for entropy change in terms of pressure, volume and temperature.
    From eqn. (1), we have


s 2 – s 1 = b T
T

kT T a v
v

b v
eeev
log^2 ( ) log log
1

21 2
1

2
1

F
HG

I
KJ

+−+
F
HG

I
KJ


F
HG

I
KJ

= a

v
v

b
T
T

v
v

logee^2 log kT T( )
1

2
1

1
2

21

F
HG

I
KJ


F
HG

I
KJ

+−

or, s 2 – s 1 = a
v
v


b p
p
logee^2 log kT T( )
1

2
1
21

F
HG

I
KJ

+

F
HG

I
KJ

+− ...(ii)


  1. Expression for entropy change in terms of pressure and temperature only.
    Again, from eqn. (1), we have


s 2 – s 1 = b T
T

kT T a v
v

b v
eeev
log^2 ( ) log log
1

21 2
1

2
1

F
HG

I
KJ

+−+
F
HG

I
KJ


F
HG

I
KJ

= a
T
T

p
p

b T
T

v
v
logee^2 log kT T( )
1

1
2

2
1

1
2

× 21

F
HG

I
KJ

F
HG

I
KJ
+−

= a
T
T

a p
p

b p
p
logeee^2 log log kT T( )
1

2
1

2
1
21

F
HG

I
KJ


F
HG

I
KJ

+

F
HG

I
KJ

+−

or, s 2 – s 1 = a T
T
ba p
p
logee^2 ( ) log kT T( )
1


2
1

21

F
HG

I
KJ

+−
F
HG

I
KJ

+− ...(iii)

lDerivation of the formula T b va-bekT = constant for the adiabatic expansion of gas :
We know that, ds = () ( )abdv
v
bkTdT
T
−++
s 2 – s 1 = avbvbTkT
alog v b T
v

kT

avb p
R

kT

av
p
ab
kT

eee
ee

ee

ee

b

log log log
log

log log

log log

−+ +
=+F
HG

I
KJ
+

=+F
HG

I
KJ
+

=+

F
HG

I
KJ
+

U


V


|
|
|
|

W


|
|
|
|

=0 for adiabatic expansion

This gives : va pb ekT = constant
pva–b ekT = constant
Tb va–bekT = constant
The above expressions can be obtained by taking kT on right-side and taking the antilog of
the resulting expressions.


Example 5.39. Determine the entropy change of 4 kg of a perfect gas whose temperature
varies from 127°C to 227°C during a constant volume process. The specific heat varies linearly
with absolute temperature and is represented by the relation :
cv = (0.48 + 0.0096 T) kJ/kg K.
Solution. Given : m = 4 kg ; T 1 = 127 + 273 = 400 K ; T 2 = 227 + 273 = 500 K ;
cv = (0.48 + 0.0096 T) kJ/kg K.

Free download pdf