SECOND LAW OF THERMODYNAMICS AND ENTROPY 285
dharm
/M-therm/th5-4.pm5
- Expression for entropy change in terms of pressure, volume and temperature.
From eqn. (1), we have
s 2 – s 1 = b T
T
kT T a v
v
b v
eeev
log^2 ( ) log log
1
21 2
1
2
1
F
HG
I
KJ
+−+
F
HG
I
KJ
−
F
HG
I
KJ
= a
v
v
b
T
T
v
v
logee^2 log kT T( )
1
2
1
1
2
21
F
HG
I
KJ
+×
F
HG
I
KJ
+−
or, s 2 – s 1 = a
v
v
b p
p
logee^2 log kT T( )
1
2
1
21
F
HG
I
KJ
+
F
HG
I
KJ
+− ...(ii)
- Expression for entropy change in terms of pressure and temperature only.
Again, from eqn. (1), we have
s 2 – s 1 = b T
T
kT T a v
v
b v
eeev
log^2 ( ) log log
1
21 2
1
2
1
F
HG
I
KJ
+−+
F
HG
I
KJ
−
F
HG
I
KJ
= a
T
T
p
p
b T
T
v
v
logee^2 log kT T( )
1
1
2
2
1
1
2
× 21
F
HG
I
KJ
+×
F
HG
I
KJ
+−
= a
T
T
a p
p
b p
p
logeee^2 log log kT T( )
1
2
1
2
1
21
F
HG
I
KJ
−
F
HG
I
KJ
+
F
HG
I
KJ
+−
or, s 2 – s 1 = a T
T
ba p
p
logee^2 ( ) log kT T( )
1
2
1
21
F
HG
I
KJ
+−
F
HG
I
KJ
+− ...(iii)
lDerivation of the formula T b va-bekT = constant for the adiabatic expansion of gas :
We know that, ds = () ( )abdv
v
bkTdT
T
−++
s 2 – s 1 = avbvbTkT
alog v b T
v
kT
avb p
R
kT
av
p
ab
kT
eee
ee
ee
ee
b
log log log
log
log log
log log
−+ +
=+F
HG
I
KJ
+
=+F
HG
I
KJ
+
=+
−
F
HG
I
KJ
+
U
V
|
|
|
|
W
|
|
|
|
=0 for adiabatic expansion
This gives : va pb ekT = constant
pva–b ekT = constant
Tb va–bekT = constant
The above expressions can be obtained by taking kT on right-side and taking the antilog of
the resulting expressions.
Example 5.39. Determine the entropy change of 4 kg of a perfect gas whose temperature
varies from 127°C to 227°C during a constant volume process. The specific heat varies linearly
with absolute temperature and is represented by the relation :
cv = (0.48 + 0.0096 T) kJ/kg K.
Solution. Given : m = 4 kg ; T 1 = 127 + 273 = 400 K ; T 2 = 227 + 273 = 500 K ;
cv = (0.48 + 0.0096 T) kJ/kg K.