286 ENGINEERING THERMODYNAMICS
dharm
/M-therm/th5-4.pm5
Entropy variation for a constant volume process is given by :
dS = mcv dT
T
, or, dS = 4 × (0.48 + 0.0096T) dT
T
Integrating both sides, we get,
S 2 – S 1 = 4 × 0.48
T
T
T
T
dT dT
1
2
1
2
zz+×4 0 0096.
= 192 2
1
.loge
T
T
F
HG
I
KJ
+ 0.0384 (T 2 – T 1 )
= 1.92 loge
500
400
F
HG
I
KJ + 0.0384(500 – 400) = 4.268 kJ/K
i.e., S 2 – S 1 = 4.268 kJ. (Ans.)
Example 5.40. The specific heats of a gas vary linearly with absolute temperature accord-
ing to the following relations :
cp = (0.85 + 0.00025 T) kg/kg K, and
cv = (0.56 + 0.00025 T) kJ/kg K
If the entropy of the gas at 1 bar pressure and 273 K is zero, find the entropy of the gas at
25 bar and 750 K temperature.
Solution. Given : cp = (0.85 + 0.00025 T) kJ/kg K ; cv = (0.56 + 0.00025 T) kJ/kg K ;
p 1 = 1 bar ; T 1 = 273 K ; p 2 = 25 bar ; T 2 = 750 K.
We know that, ds = c dT
T
p
T
dv c dT
T
Rdv
vvv
+= +
Integrating both sides, we get,
s 2 – s 1 = c dT
T
R v
vev
+
F
HG
I
z KJ
log^2
1
= c
dT
T
cc p
p
T
v p ve T
+− ×
F
HG
I
z KJ
()log^1
2
2
1
=^056 0 00025 0 29^1
25
750
273
. ..log
T
F + dT e
HG
I
KJ
+×F
HG
I
z KJ
= 0 56^2 0 00025 0 6404
1
.loge .( ). 21
T
T
TT
F
HG
I
KJ
+−
L
N
M
M
O
Q
P
P
−
= 056 750
273
.logeFHG IKJ + 0.00025(750 – 273) – 0.6404 = 0.0448 kJ/kg K
i.e., s 2 – s 1 = 0.0448 kJ/kg K. (Ans.)
Example 5.41. An insulated vessel of 0.5 m^3 capacity is divided by a rigid conducting
diaphragm into two chambers A and B, each having a capacity of 0.25 m^3. Chamber A contains
air at 1.4 bar pressure and 290 K temperature and the corresponding parameters for air in cham-
ber B are 4.2 bar and 440 K. Calculate :
(i)Final equilibrium temperature,
(ii)Final pressure on each side of the diaphragm, and
(iii)Entropy change of system.
For air take cv = 0.715 kJ/kg K and R = 0.287 kJ/kg K.