TITLE.PM5

(Ann) #1
THERMODYNAMIC RELATIONS 363

dharm
\M-therm\Th7-2.pm5




F
H

I
K

v
T p = –



F
H

I
K



F
H

I
K

p
T

v
vT. p
= – FH∂∂psIK FH∂∂TsIK FH∂∂psIK FH∂∂vsKI
vvTT
Substituting the value from eqn. (i), we get


F
H

I
K

v
T p =



F
HG

I
KJ



F
HG

I
KJ



F
HG

I
KJ



F
HG

I
KJ

T
v s

s
T

s
p

v
v T sT

= HF∂∂ IK HF∂∂IK FH∂∂ IK


R
S
T

U
V
W



F
H

I
K

T
v s

v
s

s
T

s
..TvTp = –


F
H

I
K

s
pT

∴ FH∂∂TvIK
p

= – FH∂∂spIK
T
This is Maxwell fourth relation.
Example 7.9. Derive the following relations :

(i)u = a – T (^) HF∂∂TaIK
v
(ii)h = g – T (^) HF∂∂TgIK
p
(iii)cv = – T ∂

F
HG
I
KJ
2
2
v
a
T
(iv)cp = – T ∂

F
H
G
I
K
J
2
2
p
g
T
where a = Helmholtz function (per unit mass), and
g = Gibbs function (per unit mass).
Solution. (i) Let a = f(v, T)
Then da = HF∂∂avIK
T
dv + HF∂∂TaIK
v
dT
Also da = – pdv – sdT
Comparing the co-efficients of dT, we get


F
H
I
K
a
T v = – s
Also a = u – Ts
or u = a + Ts = a – T FH∂∂TaIK
v
Hence u = a – T FH∂∂TaIK
v


. (Ans.)
(ii) Let g = f(p, T)


Then dg = HF∂∂gpIK
T

dp + HF∂∂TgIK
p

dT

Also dg = vdp – sdT
Comparing the co-efficients of dT, we get


F
H

I
K

g
T p = – s
Free download pdf