A Monte Carlo approach to value exchange options using a single stochastic factor 307
- N(d)is the cumulative standard normal distribution.
The typical simulation approach is to price the SEEO as the expectation value of
discounted cash-flows under the risk-neutral probabilityQ. So, for the risk-neutral
version of Equations (1) and (2), it is enough to replace the expected rates of returnμi
by the risk-free interest raterplus the premium-risk, namelyμi=r+λiσi,where
λiis the asset’s market price of risk, fori=V,D.So, we obtain the risk-neutral
stochastic equations:
dV
V
=(r−δv)dt+σv(dZv+λvdt)=(r−δv)dt+σvdZv∗, (5)
dD
D
=(r−δd)dt+σd(dZd+λddt)=(r−δd)dt+σddZd∗. (6)
The Brownian processesdZv∗≡dZv+λvdtanddZ∗d≡dZd+λddtare the new
Brownian motions under the risk-neutral probabilityQandCov(dZv∗,dZ∗d)=ρvddt.
Applying Ito’s lemma, we can reach the equation for the ratio-price simulationP=VD
under the risk-neutral measureQ:
dP
P
=(−δ+σd^2 −σvσdρvd)dt+σvdZ∗v−σddZ∗d. (7)
Applying the log-transformation forDT, under the probabilityQ, it results in:
DT=D 0 exp{(r−δd)T}·exp
(
−
σd^2
2
T+σdZd∗(T)
)
. (8)
We h ave t h at U ≡
(
−
σd^2
2 T+σdZ
∗
d(T)
)
∼ N
(
−
σd^2
2 T,σd
√
T
)
and
therefore exp(U)is a log-normal whose expectation value isEQ
[
exp(U)
]
=
exp
(
−
σ^2 d
2 T+
σd^2
2 T
)
=1. So, by Girsanov’s theorem, we can define the new prob-
ability measure
∼
Qequivalent toQand the Radon-Nikodym derivative is:
d
∼
Q
dQ
=exp
(
−
σd^2
2
T+σdZ∗d(T)
)
. (9)
Hence, using Equation (8), we can write:
DT=D 0 e(r−δd)T·
d
∼
Q
dQ
. (10)
By the Girsanov theorem, the processes:
dZˆd=dZ∗d−σddt, (11)
dZˆv=ρvddZˆd+
√
1 −ρ^2 vddZ′, (12)