Tempered stable distributions and processes in finance: numerical analysis 41
general there is no constructive method to find the subordinator process that changes
the time of the Brownian motion; that is we do not know the processTtsuch that the
TSαprocessXtcan be rewritten asWT(t)[7]. The shot noise representation allows
one to generate any TSαprocess.
5 Conclusions
In this work, we have focused our attention on the practical implementation of nu-
merical methods involving the use of TSαdistributions and processes in the field of
finance. Basic definitions are given and a possible algorithm to approximate the den-
sity function is proposed. Furthermore, a general Monte Carlo method is developed
with a look at option pricing.
References
- Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas,
Graphs, and Mathematical Tables. Dover Publications, Mineola, NY (1974) - Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer,
New York (2007) - Becken, W., Schmelcher, P.: The analytic continuation of the Gaussian hypergeometric
function 2F1 (a, b; c; z) for arbitrary parameters. J. Comp. Appl. Math. 126(1–2), 449–478
(2000) - Boyarchenko, S.I., Levendorski ̆ı, S.: Non-Gaussian Merton-Black-Scholes Theory. World
Scientific, River Edge, NJ (2002) - Carr, P., Geman, H., Madan, D.B., Yor, M.: The Fine Structure of Asset Returns: An
Empirical Investigation. J. Bus. 75(2), 305–332 (2002) - Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finan.
2(4), 61–73 (1999) - Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall / CRC
Press, London (2004) - Feller, W.: An Introduction to Probability Theory and Its Applications. Vol. 2. Wiley,
Princeton, 3rd edition (1971) - Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Siam,
Philadelphia (2007) - Houdre, C., Kawai, R.: On fractional tempered stable motion. Stoch. Proc. Appl. 116(8), ́
1161–1184 (2006) - Janicki, A., Weron, A.: Simulation and Chaotic Behavior ofα-stable Stochastic Processes.
Marcel Dekker, New York (1994) - Kawai, R.: An importance sampling method based on the density transformation of L ́evy
processes. Monte Carlo Meth. Appl. 12(2), 171–186 (2006) - Kim, Y.S., Rachev, S.T., Bianchi, M.L., Fabozzi, F.J.: Financial market models with l ́evy
processes and time-varying volatility. J. Banking Finan. 32(7),1363–1378 (2008) - Kim, Y.S., Rachev, S.T., Bianchi, M.L., Fabozzi, F.J.: A new tempered stable distribution
and its application to finance. In: Bol, G., Rachev, S.T., Wuerth, R. (eds.) Risk Assessment:
Decisions in Banking and Finance, pp. 77–119. Physika Verlag, Springer, Heidelberg
(2009)