Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1

42 M.L. Bianchi et al.



  1. K ̈uchler, U., Tappe, S.: Bilateral gamma distributions and processes in financial mathe-
    matics. Stochastic Proc. Appl. 118, 261–283 (2008)

  2. Poirot J., Tankov, P.: Monte Carlo Option Pricing for Tempered Stable (CGMY) Processes.
    Asia Pac. Finan. Markets 13(4), 327–344 (2006)

  3. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C:
    The Art of Scientific Computing. Cambridge University Press, Cambridge (2002)

  4. Rachev, S.T., Menn, C., Fabozzi, F.J.: Fat-tailed and Skewed Asset Return Distributions:
    Implications for Risk Management, Portfolio Selection, and Option Pricing. Wiley, New
    York (2005)

  5. Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley, New York (2000)

  6. Rosi ́nski, J.: Series representations of L ́evy processes from the perspective of point pro-
    cesses. In: Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds) L ́evy Processes –
    Theory and Applications, pp. 401–415. Birkh ̈auser, Boston (2001)

  7. Rosi ́nski, J.: Tempering stable processes. Stoch. Proc. Appl. 117, 677–707 (2007)

  8. Schoutens, W.: Levy Processes in Finance: Pricing Financial Derivatives. Wiley, Chich- ́
    ester (2003)

  9. Stoyanov, S., Racheva-Iotova, B.: Univariate stable laws in the field of finance–parameter
    estimation. J. Concrete Appl. Math. 2(4), 24–49 (2004)

  10. Terdik, G., Woyczynski, W.A.: Rosi ́ nski measures for tempered stable and related Ornstein- ́
    Uhlenbeck processes. Prob. Math. Stat. 26(2), 213–243 (2006)

Free download pdf