17.5 SUPERPOSITION OF EIGENFUNCTIONS: GREEN’S FUNCTIONS
Now, the boundary conditions require thatB=0andsin
(√
1
4 −λ)
π=0,andso
√
1
4 −λ=n, wheren=0,±^1 ,±^2 ,....Therefore, the independent eigenfunctions that satisfy the boundary conditions are
yn(x)=Ansinnx,wherenis any non-negative integer, and the corresponding eigenvalues areλn=^14 −n^2.
The normalisation condition further requires
∫π
0A^2 nsin^2 nx dx=1 ⇒ An=(
2
π) 1 / 2
.
Comparison with (17.51) shows that the appropriate Green’s function is therefore given
by
G(x, z)=2
π∑∞
n=0sinnxsinnz
1
4 −n2.
Case (i). Using (17.50), the solution withf(x)=sin2xis given byy(x)=2
π∫π0(∞
∑
n=0sinnxsinnz
1
4 −n2)
sin 2zdz=2
π∑∞
n=0sinnx
1
4 −n2∫π0sinnzsin 2zdz.Now the integral is zero unlessn= 2, in which case it is
∫π
0sin^22 zdz=π
2.
Thus
y(x)=−2
πsin 2x
15 / 4π
2=−
4
15
sin 2xis the full solution forf(x)=sin2x. This is, of course, exactly the solution found by using
the methods of chapter 15.
Case (ii). The solution withf(x)=x/2isgivenby
y(x)=∫π0(
2
π∑∞
n=0sinnxsinnz
1
4 −n2)
z
2dz=1
π∑∞
n=0sinnx
1
4 −n2∫π0zsinnz dz.The integral may be evaluated by integrating by parts. Forn=0,
∫π
0zsinnz dz=[
−
zcosnz
n]π0+
∫π0cosnz
ndz=
−πcosnπ
n+
[
sinnz
n^2]π0=−π(−1)n
n.
Forn= 0 the integral is zero, and thus
y(x)=∑∞
n=1(−1)n+1sinnx
n( 1
4 −n2 ),
is the full solution forf(x)=x/2. Using the methods of subsection 15.1.2, the solution
is found to bey(x)=2x− 2 πsin(x/2), which may be shown to be equal to the above
solution by expanding 2x− 2 πsin(x/2) as a Fourier sine series.