3.3.6 Inequalities
➤➤
89 97
➤
Find the ranges of values ofxfor which the following are satisfied:
(i) 2x− 3 > 2 (ii)
2 x
x− 3
< 1
(iii) x^2 −x+ 1 ≥3(iv)x^2 + 2 x+ 2 < 5
(v) | 2 x− 1 |≤2(vi)
2
|x− 4 |
< 4
(vii)
1
x− 1
<− 3
3.3.7 Inverse of a function
➤➤
89 100
➤
Find the inverse functions for each of the following functions, specifying the values for
which they exist.
(i) 2x+ 1 (ii)
x− 1
x+ 2
x=− 2
(iii) x^2 + 1 ,x≥ 0
3.3.8 Series and sigma notation
➤➤
89 102
➤
A.Write the following in sigma notation:
(i) 1+ 8 + 27 + 64 + 125 (ii) 3+ 6 + 9 + 12 + 15 +···+ 99
(iii)
1
2
+
1
3
+
1
4
+
1
5
+···+
1
50
(iv) 1−
1
3
+
1
9
−
1
27
+···
B.Write down the first four terms in the series:
(i)
∑∞
r= 1
1
r
(ii)
∑^20
r= 0
r!
(iii)
∑∞
r= 1
1
r(r+ 1 )
3.3.9 Finite series
➤➤
89 103
➤
Sum the geometric series:
(i) 1+
1
2
+
1
4
+
1
8
+···+
1
32
(ii)
∑^6
n= 1
( 0. 1 )n
(iii)
∑^8
n= 1
2 n (iv)
∑^4
n= 1
(
1
3
)n
(v) 1+ 0. 1 + 0. 01 + 0. 001 + 0. 0001