3.3.10 Infinite series
➤➤
89 105
➤
A.Identify which are geometric sequences, and sum them to infinity.
(i) 1, 2 , 3 , 4 ,... (ii) − 1 , 3 , 5 , 9 ,...
(iii) 1, 1 , 1 , 1 ,... (iv)^12 ,^13 ,^14 ,^15 ,...
(v) 1,
1
3
,
1
9
,
1
27
,... (vi) 0. 1 , 0. 3 , 0. 5 , 0. 7 ,...
(vii) 2,− 4 , 8 ,− 16 ,... (viii) 0. 2 , 0. 04 , 0. 008 , 0. 0016 ,...
B.Find the sum of the infinite geometric series with first terms and common ratios given
respectively by
(i) 1, 2 (ii) 2,^12
(iii) − 1 ,1(iv)1,^13
3.3.11 Infinite binomial series
➤➤
89 106
➤
Find the first four terms of the binomial expansion of the following:
(i) ( 1 +x)−^1 (ii) ( 1 − 3 x)−^1
(iii) ( 1 + 4 x)−^2 (iv) ( 1 −x)
1
2
3.4 Applications
1.For each of the following functions, obtain simplest forms of the expressions for
(a) f(a+h)−f(a) (b)
f(a+h)−f(a)
h
(i) 2x (ii) x^2 (iii) 4x^3 − 6 x^2 + 3 x− 1
In each case give the result when you lethtend to zero. These sorts of calculations
are required indifferentiation from first principles(Chapter 8).
2.In statistics themean,x ̄,andvariance,σ^2 ,ofasetofnnumbersx 1 ,x 2 ,...,xnare
defined by
x ̄=
1
n
∑n
i= 1
xi σ^2 =
1
n
∑n
i= 1
(xi− ̄x)^2
respectively. Show thatσ^2 may be alternatively written as
σ^2 =
1
n
(n
∑
i= 1
xi^2 −nx ̄^2
)