=
−(tan 45°+tan 30°)
1 −tan 45°tan 30°
=−
(
1 +
1
√
3
)
(
1 −
1
√
3
)=
1 +
√
3
1 −
√
3
=− 2 +
√
3 ( 21
➤
)
D. From cos(A+B)=cosAcosB−sinAsinB, withA=Bwe get
cos 2A=cos^2 A−sin^2 A
Using sin^2 A+cos^2 A=1 this can be expressed in two alternative
forms:
cos 2A=2cos^2 A− 1
= 1 −2sin^2 A
E. (i) Using cos 2θ=^1 −2sin^2 θ
cos 30°= 1 −2sin^215 °
so sin^215 °=
1
2
( 1 −cos 30°)
=
1
2
(
1 −
√
3
2
)
=
2 −
√
3
4
so sin 15°=
√
2 −
√
3
2
(ii) tan 2A=
2tanA
1 −tan^2 A
withA= 15 °gives
tan 30°=
1
√
3
=
2tan15°
1 −tan^215 °
=
2 x
1 −x^2
wherex=tan 15°
So 1−x^2 = 2
√
3 x
orx^2 + 2
√
3 x− 1 =0 giving
x=
− 2
√
3 ±
√
4 × 3 + 4
2
=
− 2
√
3 ± 4
2
= 2 −
√
3 (tan 15°is positive)