9.Write down the first four terms of the sequence whosenth term is:
(i) n (ii) (n^2 + 3 n)/ 5 n (iii) cos^12 nπ (iv) ( 1 +(− 1 )n)/n
(v) 1/
√
n (vi)
(
n+sin^12 nπ
)/
( 2 n+ 1 ) (vii) arn−^1
(viii) (− 1 )nx^2 n+^1 /( 2 n+ 1 )
Investigate the limits of these sequences.
Hints (vii) limit depends onr (viii) limit depends onx
10.Write down thenth terms of the sequences
(i)
1
2
,
1
4
,
1
8
,
1
16
,... (ii) 0,
1
2
,
2
3
,
3
4
,
4
5
,... (iii)
1
1. 2
,
1
2. 3
,
1
3. 4
,...
(iv)
3
2
,
5
4
,
9
8
,
17
16
,... (v) − 1 ,
1
2
,−
1
6
,
1
24
,−
1
120
,...
(vi)
x
2. 3
,
2 x^2
3. 4
,
3 x^3
4. 5
,...(vii) −
x^3
3
,
x^5
5
,−
x^7
7
,... (viii)
x
2
,
2 x
3
,
3 x
4
,
4 x
5
,...
Investigate the limits of these sequences.
Hints(vi), (vii), and (viii) depend onx.
11.Evaluate the following limits:
(i) lim
x→∞
x^2 e−x (ii) lim
n→∞
1
n
(iii) lim
n→∞
1
n!
(iv) lim
n→∞
n
n+ 2
(v) lim
n→∞
∣
∣
∣
∣
x
n+ 1
∣
∣
∣
∣ (vi) nlim→∞
∣
∣
∣
∣
xn
n+ 1
∣
∣
∣
∣
(vii) lim
n→∞
a(l−rn)
l−r
12.Ifl=limn→∞
∣
∣
∣
∣
un+ 1
un
∣
∣
∣
∣findlin the following cases:
(i) un=
1
n^2
(ii) un=
1
n!
(iii) un=
(− 1 )n(x/ 2 )n
(n+ 1 )
13.Plot or sketch the functionf(x)= 3 x^3 − 4 x+5 and verify that it has a root near
x=− 1 .5. Use the Newton – Raphson method to obtain this root to 2 decimal places.
14.Using the Newton – Raphson method find to 2 decimal places the value of
(i)
√
291. 7 (ii)^3
√
3. 074
Hint(i) Treat as the equationx^2 − 291. 7 =0. Similarly for (ii).
15.Find the sequence of thenth partial sums for the following series, i.e. the sequence:
S 1 ,S 2 ,S 3 ,...
If possible, find a formula forSnand thus evaluate lim
n→ 8
Sn.