Understanding Engineering Mathematics

(やまだぃちぅ) #1
9.Write down the first four terms of the sequence whosenth term is:

(i) n (ii) (n^2 + 3 n)/ 5 n (iii) cos^12 nπ (iv) ( 1 +(− 1 )n)/n
(v) 1/


n (vi)

(
n+sin^12 nπ

)/
( 2 n+ 1 ) (vii) arn−^1
(viii) (− 1 )nx^2 n+^1 /( 2 n+ 1 )

Investigate the limits of these sequences.
Hints (vii) limit depends onr (viii) limit depends onx

10.Write down thenth terms of the sequences


(i)

1
2

,

1
4

,

1
8

,

1
16

,... (ii) 0,

1
2

,

2
3

,

3
4

,

4
5

,... (iii)

1
1. 2

,

1
2. 3

,

1
3. 4

,...

(iv)

3
2

,

5
4

,

9
8

,

17
16

,... (v) − 1 ,

1
2

,−

1
6

,

1
24

,−

1
120

,...

(vi)

x
2. 3

,

2 x^2
3. 4

,

3 x^3
4. 5

,...(vii) −

x^3
3

,

x^5
5

,−

x^7
7

,... (viii)

x
2

,

2 x
3

,

3 x
4

,

4 x
5

,...

Investigate the limits of these sequences.
Hints(vi), (vii), and (viii) depend onx.

11.Evaluate the following limits:


(i) lim
x→∞
x^2 e−x (ii) lim
n→∞

1
n

(iii) lim
n→∞

1
n!

(iv) lim
n→∞

n
n+ 2

(v) lim
n→∞





x
n+ 1




∣ (vi) nlim→∞





xn
n+ 1





(vii) lim
n→∞

a(l−rn)
l−r

12.Ifl=limn→∞






un+ 1
un




∣findlin the following cases:

(i) un=

1
n^2

(ii) un=

1
n!

(iii) un=

(− 1 )n(x/ 2 )n
(n+ 1 )

13.Plot or sketch the functionf(x)= 3 x^3 − 4 x+5 and verify that it has a root near
x=− 1 .5. Use the Newton – Raphson method to obtain this root to 2 decimal places.


14.Using the Newton – Raphson method find to 2 decimal places the value of


(i)


291. 7 (ii)^3


3. 074

Hint(i) Treat as the equationx^2 − 291. 7 =0. Similarly for (ii).

15.Find the sequence of thenth partial sums for the following series, i.e. the sequence:


S 1 ,S 2 ,S 3 ,...

If possible, find a formula forSnand thus evaluate lim
n→ 8

Sn.
Free download pdf