9.Write down the first four terms of the sequence whosenth term is:(i) n (ii) (n^2 + 3 n)/ 5 n (iii) cos^12 nπ (iv) ( 1 +(− 1 )n)/n
(v) 1/√
n (vi)(
n+sin^12 nπ)/
( 2 n+ 1 ) (vii) arn−^1
(viii) (− 1 )nx^2 n+^1 /( 2 n+ 1 )Investigate the limits of these sequences.
Hints (vii) limit depends onr (viii) limit depends onx10.Write down thenth terms of the sequences
(i)1
2,1
4,1
8,1
16,... (ii) 0,1
2,2
3,3
4,4
5,... (iii)1
1. 2,1
2. 3,1
3. 4,...(iv)3
2,5
4,9
8,17
16,... (v) − 1 ,1
2,−1
6,1
24,−1
120,...(vi)x
2. 3,2 x^2
3. 4,3 x^3
4. 5,...(vii) −x^3
3,x^5
5,−x^7
7,... (viii)x
2,2 x
3,3 x
4,4 x
5,...Investigate the limits of these sequences.
Hints(vi), (vii), and (viii) depend onx.11.Evaluate the following limits:
(i) lim
x→∞
x^2 e−x (ii) lim
n→∞1
n(iii) lim
n→∞1
n!(iv) lim
n→∞n
n+ 2(v) lim
n→∞∣
∣
∣
∣x
n+ 1∣
∣
∣
∣ (vi) nlim→∞∣
∣
∣
∣xn
n+ 1∣
∣
∣
∣(vii) lim
n→∞a(l−rn)
l−r12.Ifl=limn→∞
∣
∣
∣
∣un+ 1
un∣
∣
∣
∣findlin the following cases:(i) un=1
n^2(ii) un=1
n!(iii) un=(− 1 )n(x/ 2 )n
(n+ 1 )13.Plot or sketch the functionf(x)= 3 x^3 − 4 x+5 and verify that it has a root near
x=− 1 .5. Use the Newton – Raphson method to obtain this root to 2 decimal places.
14.Using the Newton – Raphson method find to 2 decimal places the value of
(i)√
291. 7 (ii)^3√
3. 074Hint(i) Treat as the equationx^2 − 291. 7 =0. Similarly for (ii).15.Find the sequence of thenth partial sums for the following series, i.e. the sequence:
S 1 ,S 2 ,S 3 ,...If possible, find a formula forSnand thus evaluate lim
n→ 8Sn.