(i) 1+
1
2
+
1
22
+
1
23
+
1
24
+··· (ii) 1−
1
3
+
1
32
−
1
33
+···
(iii) 1+ 3 + 5 + 7 +··· (iv) 1+ 1 +
1
2!
+
1
3!
+
1
4!
+···
(v) 1+
1
2
+
1
3
+
1
4
+···
16.Obtain a formula for thenth partial sumSnfor the following series and hence in-
vestigate their convergence (or otherwise).
(i) 4+
4
3
+
4
32
+
4
33
+··· (ii) − 6 − 2 + 2 + 6 + 10 + 14 +···
(iii) 1+ 2 + 22 + 23 +··· (iv) 1+
x
2
+
(x
2
) 2
+
(x
2
) 3
+···
17.State, without proof, which of the following series are convergent/divergent. Write
down thenth term of each series.
(i) − 1 + 1 − 1 + 1 − 1 +··· (ii) 1. 01 +( 1. 01 )^2 +( 1. 01 )^3 +···
(iii) (. 99 )^2 +(. 99 )^3 +(. 99 )^4 +··· (iv)
1
50
+
1
51
+
1
52
+
1
53
+···
(v) 10^6 +
105
2
+
104
3
+
103
4
+··· (vi)
1
40
−
1
50
+
1
60
−
1
70
+···
(vii)
3
4
+ 22
(
3
4
) 2
+ 32
(
3
4
) 3
+ 42
(
3
4
) 4
+···
(viii)
1
2
+
2
3
+
3
4
+
4
5
+··· (ix) 1+(. 2 )+(. 2 )^2 +(. 2 )^3 +···
18.Find thenth term of the following series and test for convergence.
(i) 1+ 1 + 1 + 1 +··· (ii) 1− 2 + 3 − 4 + 5 +···
(iii) 1+ 2 (. 9 )+ 3 (. 9 )^2 + 4 (. 9 )^3 +··· (iv) 1−
1
√
2
+
1
√
3
−···
(v) 1^3 + 23 (. 95 )+ 33 (. 95 )^2 +··· (vi)
1
2
+
3
4
+
5
6
+···
(vii)
1
2
−
3
4
+
5
6
−
7
8
+··· (viii) 1·
1
2
+
1
2
·
3
4
+
1
3
·
5
6
+
1
4
·
7
8
+···
19.Find the range of values forxfor which the following series are convergent.
(i) x−
x^2
2
+
x^3
3
−
x^4
4
+··· (ii) 2x+( 2 x)^2 +( 2 x)^3 +( 2 x)^4 +···
(iii) 1+x+
x^2
2!
+
x^3
3!
+··· (iv) 1^5 + 25 x+ 35 x^2 + 45 x^3 + 55 x^4 +···
(v) 1^2 + 22 x+ 32 x^2 + 42 x^3 +···
20.For the binomial series( 1 +x)mshow that
∣
∣
∣
∣
un+ 1
un
∣
∣
∣
∣=
∣
∣
∣
∣
m−n+ 1
n
∣
∣
∣
∣|x|and deduce that
the series converges if|x|<1 and diverges if|x|>1(mnot a positive integer).