Understanding Engineering Mathematics

(やまだぃちぅ) #1
(i) 1+

1
2

+

1
22

+

1
23

+

1
24

+··· (ii) 1−

1
3

+

1
32


1
33

+···

(iii) 1+ 3 + 5 + 7 +··· (iv) 1+ 1 +

1
2!

+

1
3!

+

1
4!

+···

(v) 1+

1
2

+

1
3

+

1
4

+···

16.Obtain a formula for thenth partial sumSnfor the following series and hence in-
vestigate their convergence (or otherwise).


(i) 4+

4
3

+

4
32

+

4
33

+··· (ii) − 6 − 2 + 2 + 6 + 10 + 14 +···

(iii) 1+ 2 + 22 + 23 +··· (iv) 1+

x
2

+

(x

2

) 2
+

(x

2

) 3
+···

17.State, without proof, which of the following series are convergent/divergent. Write
down thenth term of each series.


(i) − 1 + 1 − 1 + 1 − 1 +··· (ii) 1. 01 +( 1. 01 )^2 +( 1. 01 )^3 +···

(iii) (. 99 )^2 +(. 99 )^3 +(. 99 )^4 +··· (iv)

1
50

+

1
51

+

1
52

+

1
53

+···

(v) 10^6 +

105
2

+

104
3

+

103
4

+··· (vi)

1
40


1
50

+

1
60


1
70

+···

(vii)

3
4

+ 22

(
3
4

) 2
+ 32

(
3
4

) 3
+ 42

(
3
4

) 4
+···

(viii)

1
2

+

2
3

+

3
4

+

4
5

+··· (ix) 1+(. 2 )+(. 2 )^2 +(. 2 )^3 +···

18.Find thenth term of the following series and test for convergence.


(i) 1+ 1 + 1 + 1 +··· (ii) 1− 2 + 3 − 4 + 5 +···

(iii) 1+ 2 (. 9 )+ 3 (. 9 )^2 + 4 (. 9 )^3 +··· (iv) 1−

1

2

+

1

3

−···

(v) 1^3 + 23 (. 95 )+ 33 (. 95 )^2 +··· (vi)

1
2

+

3
4

+

5
6

+···

(vii)

1
2


3
4

+

5
6


7
8

+··· (viii) 1·

1
2

+

1
2

·

3
4

+

1
3

·

5
6

+

1
4

·

7
8

+···

19.Find the range of values forxfor which the following series are convergent.


(i) x−

x^2
2

+

x^3
3


x^4
4

+··· (ii) 2x+( 2 x)^2 +( 2 x)^3 +( 2 x)^4 +···

(iii) 1+x+

x^2
2!

+

x^3
3!

+··· (iv) 1^5 + 25 x+ 35 x^2 + 45 x^3 + 55 x^4 +···

(v) 1^2 + 22 x+ 32 x^2 + 42 x^3 +···

20.For the binomial series( 1 +x)mshow that






un+ 1
un




∣=





m−n+ 1
n




∣|x|and deduce that
the series converges if|x|<1 and diverges if|x|>1(mnot a positive integer).
Free download pdf