52 CHAPTER 2. ELECTRONIC LEVELS IN SEMICONDUCTORS
Experimental
bandgap
EG(eV)
Type of Temperature dependence
Compound bandgap 0 K 300 K of bandgapEG(T)(eV)
AlP Indirect 2.52 2.45 2.52 – 3.18× 10 −^4 T^2 /(T+ 588)
AlAs Indirect 2.239 2.163 2.239 – 6.0× 10 −^4 T^2 /(T+ 408)
AlSb Indirect 1.687 1.58 1.687 – 4.97× 10 −^4 T^2 /(T+ 213)
GaP Indirect 2.338 2.261 2.338 – 5.771× 10 −^4 T^2 /(T+ 372)
GaAs Direct 1.519 1.424 1.519 – 5.405× 10 −^4 T^2 /(T+ 204)
GaSb Direct 0.810 0.726 0.810 – 3.78× 10 −^4 T^2 /(T+ 94)
InP Direct 1.421 1.351 1.421 – 3.63× 10 −^4 T^2 /(T+ 162)
InAs Direct 0.420 0.360 0.420 – 2.50× 10 −^4 T^2 /(T+ 75)
InSb Direct 0.236 0.172 0.236 – 2.99× 10 −^4 T^2 /(T+ 140)
Table 2.1: Bandgaps of binary III–V compounds (From Casey and Panish, 1978).
This integral is particularly simple to evaluate as 0 K, since, at this temperature
1
exp
(
E−EF
kBT
)
+1
=1ifE≤EF
=0otherwise
this gives
n=
∫EF
EC
N(E)dE
We t h e n h ave
n =
√
2 m^30 /^2
π^2 ^3
∫EF
EC
(E−EC)^1 /^2 dE
=
2
√
2 m^30 /^2
3 π^2 ^3
(EF−EC)^3 /^2
or
EF−EC=
^2
2 m 0
(
3 π^2 n
) 2 / 3
(2.7.3)
The expression is applicable to metals such as copper, gold, etc. In Table 2.2 we show the
conduction band electron densities for several metals. The quantityEF,which is the highest oc-
cupied energy state at 0 K, is called the Fermi energy. We can define a corresponding wavevector