512 Geometric Programming
Table 8.2 Corresponding Primal and Dual Programs
Primal program Dual program
FindX=
x 1
x 2
..
.
xn
so that
g 0 (X)≡f (X)→minimum
subject to the constraints
x 1 > 0
x 2 > 0
..
.
xn> 0 ,
g 1 (X)≤ 1
g 2 (X)≤ 1
..
.
gm(X)≤ 1 ,
Findλ=
λ 01
λ 02
..
.
λ 0 N 0
· · ·
λ 11
λ 12
..
.
λ 1 N 1
· · ·
..
.
·· ·
λm 1
λm 2
..
.
λmN m
so that
v(λ)=
∏m
k= 0
N∏k
j= 1
(
ckj
λkj
∑Nk
l= 1
λkl
)λkj
→ maximum
with subject to the constraints
g 0 (X)=
∑N^0
j= 1
c 0 jx
a 01 j
1 x
a 02 j
2 ·· ·x
a 0 jn
n
g 1 (X)=
∑N^1
j= 1
c 1 jx
a 11 j
1 x
a 12 j
2 ·· ·x
a 1 jn
n
g 2 (X)=
∑N^2
j= 1
c 2 jx
a 21 j
1 x
a 22 j
2 ·· ·x
a 2 jn
n
..
.
gm(X)=
∑Nm
j= 1
cmjx
am 1 j
1 x
am 2 j
2 ·· ·x
amnj
n
λ 01 ≥ 0
λ 02 ≥ 0
..
.
λ 0 N 0 ≥ 0
λ 11 ≥ 0
..
.
λ 1 N 1 ≥ 0
..
.
λm 1 ≥ 0
λm 2 ≥ 0
..
.
λmNm≥ 0
(continues)