Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

512 Geometric Programming


Table 8.2 Corresponding Primal and Dual Programs
Primal program Dual program

FindX=








x 1
x 2
..
.
xn








so that

g 0 (X)≡f (X)→minimum

subject to the constraints
x 1 > 0
x 2 > 0
..
.
xn> 0 ,
g 1 (X)≤ 1
g 2 (X)≤ 1
..
.
gm(X)≤ 1 ,

Findλ=




























λ 01
λ 02
..
.
λ 0 N 0
· · ·
λ 11
λ 12
..
.
λ 1 N 1
· · ·
..
.
·· ·
λm 1
λm 2
..
.
λmN m




























so that

v(λ)=

∏m
k= 0

N∏k
j= 1

(
ckj
λkj

∑Nk

l= 1

λkl

)λkj

→ maximum

with subject to the constraints

g 0 (X)=

∑N^0

j= 1

c 0 jx
a 01 j
1 x

a 02 j
2 ·· ·x

a 0 jn
n

g 1 (X)=

∑N^1

j= 1

c 1 jx
a 11 j
1 x

a 12 j
2 ·· ·x

a 1 jn
n

g 2 (X)=

∑N^2

j= 1

c 2 jx
a 21 j
1 x

a 22 j
2 ·· ·x

a 2 jn
n

..
.

gm(X)=

∑Nm

j= 1

cmjx
am 1 j
1 x

am 2 j
2 ·· ·x

amnj
n

λ 01 ≥ 0
λ 02 ≥ 0
..
.
λ 0 N 0 ≥ 0
λ 11 ≥ 0
..
.
λ 1 N 1 ≥ 0
..
.
λm 1 ≥ 0
λm 2 ≥ 0
..
.
λmNm≥ 0
(continues)
Free download pdf