References 429
- S. Hess, Viscoelasticity associated with molecular alignment. Z. Naturforsch.35a, 915–919
(1980) - H. Thurn, M. Löbl, H. Hoffmann, Viscoelastic detergent solutions. a quantitative comparison
between theory and experiment. J. Phys. Chem. 89 , 517–522 (1985) - H. Giesekus, Constitutive equations for polymer fluids based on the concept of configuration-
dependent molecular mobility: a generalized mean-configuration model. J. Non-Newtonian
Fluid Mech. 17 , 349–372 (1985); 43. (1985); Flow phenomena in viscoelastic fluids and their
explanation using statistical methods. J. Non-Equilib Thermodyn. 11 , 157–174 (1986) - M. Reiner,Twelve Lectures on Theoretical Rheology(North Holland, 1949);Rheologie(Carl
Hanser Verlag, Leipzig, München, 1968) - P. Coussot,Rheophysics, Matter in All Its States(Springer, 2014)
- S. Hess, Non-newtonian viscosity and normal pressure differences of simple fluids. Phys.
Rev. A 25 , 614–616 (1982) - M.W. Johnson, D. Segalman, A model for viscoelastic fluid behavior which allows non-affine
deformation. J. Non-newt. Fluid Mech. 2 , 255–270 (1977) - O. Rodulescu, P. Olmsted, Matched asymptotic solutions for the steady banded flow of
the Johnson-Segalman model in various geometries. Nonnewton. Fluid Mech. 91 , 143–162
(2000); P.D. Olmsted, O. Radulescu, C.Y.D. Lu, The Johnson-Segalman model with a diffu-
sion term: a mechanism for stress selection. J. Rheol. 44 , 257–275 (2000); H.J. Wilson, S.M.
Fielding, Linear instability of planar shear banded flow of both diffusive and non-diffusive
Johnson-Segalman fluids. Nonnewton. Fluid Mech. 138 , 181–196 (2006) - M. Miesowicz, The three coefficients of viscosity of anisotropic liquids. Nature 158 , 27–27
(1946) - O. Parodi, Stress tensor for a nematic fluid crystal. J. Phys. (Paris) 31 , 581 (1970)
- W. Helfrich, Torques in sheared nematic liquid crystals: a simple model in terms of the theory
of dense fluids. J. Chem. Phys. 53 , 2267 (1970) - D. Baalss, S. Hess, Nonequilibrium molecular dynamics studies on the anisotropic viscosity of
perfectly aligned nematic liquid crystals. Phys. Rev. Lett. 57 , 86 (1986); Viscosity coefficients
of oriented nematic and nematic discotic liquid crystals; Affine transformation model. Z.
Naturforsch.43a, 662–670 (1988) - H. Ehrentraut, S. Hess, On the viscosity of partially aligned nematic and nematic discotic
liquid crystals. Phys. Rev. E 51 , 2203 (1995); S. Blenk, H. Ehrentraut, S. Hess, W. Muschik,
Viscosity coefficients of partially aligned nematic liquid crystals. ZAMM 7 , 235 (1994) - M.A.Osipov,E.M.Terentjev,Rotationaldiffusionandrheologicalpropertiesofliquidcrystals.
Z. Naturforsch.44a, 785–792 (1989) - A.M. Sonnet, P.L. Maffettone, E.G. Virga, Continuum theory for nematic liquid crystals with
tensorial order. J. Nonnewton. Fluid Mech. 119 , 51–59 (2004) - H. Kneppe, F. Schneider, N.K. Sharma, Ber. Bunsenges. Phys. Chem. 85 , 784 (1981); H.-H.
Graf, H. Kneppe, F. Schneider, MolPhys. 77 , 521 (1992) - S. Sarman, D.J. Evans, J. Chem. Phys. 99 , 9021 (1993). S. Sarman, J. Chem. Phys. 101 , 480
(1994) - S. Cozzini, L.F. Rull, G. Ciccotti, G.V. Paolini, Intrinsic frame transport for a model of nematic
liquid crystal. Physica A 240 , 173–187 (1997) - A. Eich, B.A. Wolf, L. Bennett, S. Hess, Electro- and magneto-rheology of nematic liquid
crystals-experimentandnon-equilibriummoleculardynamics(NEMD)computersimulation.
J. Chem. Phys. 113 , 3829–3838 (2000) - L. Bennett, S. Hess, Nonequilibrium-molecular dynamics investigation of the presmectic
behavior of the viscosity of a nematic liquid crystal. Phys. Rev. E 60 , 5561–5567 (1999) - S. Hess, D. Frenkel, M.P. Allen, On the anisotropy of diffusion in nematic liquid crystals: test
of a modified affine transformation model via molecular dynamics. Mol. Phys. 74 , 765–774
(1991) - S. Hess, Fokker-Planck equation approach to flow alignment in liquid crystals. Z. Naturforsch.
31a, 1034–1037 (1976)