Tensors for Physics

(Marcin) #1

430 References



  1. M. Doi, Rheological properties of rodlike polymers in isotropic and liquid crystalline phases.
    Ferroelectrics 30 , 247 (1980); Molecular dynamics and rheological properties of concentrated
    solutions of rodlike polymers in isotropic liquids and liquid crystals. J. Polym. Sci. Polym.
    Phys. 19 , 229 (1981)

  2. M. Doi, S.F. Edwards,The Theory of Polymer Dynamics(Clarendon, Oxford, 1986)

  3. A. Peterlin, H.A. Stuart,Doppelbrechung, insbesondere künstliche Doppelbrechung,vol.8,
    ed. by A. Eucken, K.L. Wolf. Hand- und Jahrbuch der chem. Physik, I B (Leipzig, 1943)

  4. G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc.
    Lond. (A) 102 , 161 (1922)

  5. G. Marrucci, P.L. Maffettone, A description of the liquid crystalline phase of rodlike polymers
    at high shear rates. Macromolecules 22 , 4076–4082 (1989)

  6. M. Gregory Forest, Q. Wang, R. Zhou, The flow-phase diagram of Doi-Hess theory for sheared
    nematic polymers II: finite shear rates. Rheol. Acta 44 , 80–93 (2004)

  7. G. Marrucci, N. Grizzuti, Rheology of liquid-crystalline polymers. Theory and experiments.
    Makromolekulare Chemie, Macromolecular Symposia48–49, 181–188 (1991)

  8. R.G.Larson,The Structure and Rheology of Complex Fluids(OxfordUniversityPress,Oxford,


1999)


  1. M. Kröger, Simple models for complex nonequilibrium fluids. Phys. Rep. 390 , 453–551
    (2004)

  2. M. Kröger,Models for Polymeric and Anisotropic Liquids(Lecture Notes in Physics; 675)
    (Springer, Berlin, Heidelberg, New York, 2005)

  3. S. Hess, Irreversible thermodynamics of non-equilibrium alignment phenomena in molecular
    liquids and liquid crystals, I. Derivation of nonlinear constitutive laws, relaxation of the
    alignment, phase transition. Z. Naturforsch.30a, 728–738 (1975). II. Viscous flow and flow
    alignment in the isotropic (stable and metastable) and nematic phase. Z. Naturforsch.30a,
    1224–1232 (1975)

  4. S. Hess, Pre- and post-transitional behavior of the flow alignment and flow-induced phase
    transition in liquid crystals. Z. Naturforsch.31a, 1507–1513 (1976)

  5. P.D. Olmsted, P. Goldbart, Theory of the non-equilibrium phase transition for nematic liquid
    crystals under shear flow. Phys. Rev. A 41 , 4588 (1990); Nematogenic fluids under shear
    flow: state selection, coexistence, phase transitions, and critical behavior. Phys. Rev. A 46 ,
    4966–4993 (1992)

  6. C. Pereira Borgmeyer, S. Hess, Unified description of the flow alignment and viscosity in
    the isotropic and nematic phases of liquid crystals. J. Non-Equilib. Thermodyn 20 , 359–384
    (1995)

  7. S. Hess, I. Pardowitz, On the unified theory for nonequilibrium phenomena in the isotropic
    and nematic phases of a liquid crystal; spatially inhomogeneous alignment. Z. Naturforsch.
    36a, 554–558 (1981)

  8. S. Hess, H.-M. Koo, Boundary effects on the flow-induced orientational anisotropy and on
    the flow properties of a molecular liquid. J. Non-Equilib. Thermodyn. 14 , 159 (1989)

  9. S. Heidenreich, P. Ilg, S. Hess, Boundary conditions for fluids with internal orientational
    degree of freedom: apparent slip velocity associated with the molecular alignment. Phys.
    Rev. E 75 , 066302 (2007)

  10. A.G.S. Pierre, W.E. Köhler, S. Hess, Time-correlation functions for gases of linear molecules
    in a magnetic field. Z. Naturforsch.27a, 721–732 (1972)

  11. R. Kubo, Statistical-mechanical theory of irreversible processes. I. general theory and simple
    applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12 , 570–586 (1957)

  12. S. Hess, D. Evans, Computation of the viscosity of a liquid from time averages of stress
    fluctuations. Phys. Rev. E 64 , 011207 (2001); S. Hess, M. Kröger, D.J. Evans, Crossover
    between short- and long-time behavior of stress fluctuations and viscoelasticity of liquids.
    Phys. Rev. E 67 , 042201 (2003)

  13. S. Hess, Kinetic theory of spectral line shapes - the transition from Doppler broadening to
    collisional broadening. Physica 61 , 80–94 (1972)

Free download pdf