Final_1.pdf

(Tuis.) #1

Multiplying the above by and evaluating the expected value, we have


Multiplying by and evaluating the expected value, we have


Kalman Filter Design: Lag d ( d >= 3)


To enhance readability, we use and interchangeably to denote the
posteriori state estimate. The slope is estimated as the mean of the last d
slope samples. This is given as


The state equation is therefore


The state variance is given by


1


11


2
+ 1 2 1






 ()−−−+ ()


d

X


d

var ˆttdvarXˆ

ˆˆ


ˆˆ


ˆˆˆ


|

|

XX


XX


d

X
d

X


d

X


tt t

ttd

tt t t d

−−

−−−

−−−−

=+


()−


=+







 −


11

11

1111


11


XXˆˆ


d

ttd−−− 11 −


t

ˆ


Xt|t

−−() 1 rXXttt−−− 134 cov()ˆ ,ˆ ]

cov()XXˆtt−− − − 13 ,ˆ =+gt 1 [() 112 rt 1 cov()XXˆt t−− 23 ,ˆ +−()rt− 1 var()Xˆt− 3 −


t− 3

−−() 1 rXXttt−−− 124 cov()ˆ ,ˆ ]

cov()XXˆtt−− − − 12 ,ˆ =+gt 1 [() 112 rt 1 var()Xˆt− 2 +−()rt− 1 cov()XXˆt t−− 23 ,ˆ −


t− 2

rXˆ gY

−−() (^11) tt−− 14 ]+−()tt−− 11


ˆˆˆ


Xtt−− 11 | =+gt− 1 [() 112 rXt− − 1 t 2 +−()rXt− − 1 t 3 −

Spread Inversion 203

Free download pdf