Now the state equation is given as
The observation equation is given as
The variance of Ytis calculated as described in the discussion of the obser-
vation equation. We now define
gt= 1 – Kt, where Ktis the Kalman gain as describedin the standard predictor-
corrector framework. The Kalman equations providing the minimum vari-
ance linear estimate are as follows:
We now proceed to obtain the recursive relation for. The
Kalman equation for subscript t– 1 is as follows:
Substituting for Xˆtt−− 12 | , we have
XgXtt||−−−− 1112 =+−t ˆt t () 1 gYt t− 1
cov(XXˆtt−− 12 ,ˆ )
var ˆ
var ˆ var
var ˆ var
|
|
|
X
XY
XY
tt
tt t
tt t
()=
()()
()+ ()
−
−
1
1
ˆˆ
XgXtt||=+−t tt− 1 () 1 gYt t
g
Y
YX
t
t
ttt
=
()
()+ ()−
var
var var ˆ|1
YXttt=+ˆ η
ˆˆ ˆˆ ˆˆ
ˆˆˆˆ
var ˆ var ˆ
|
|
|
XXrXX rXX
XrXrXrX
XrX
tt t t t t t t t
tt tt tt tt
tt t t
−− −− −−
−− −−
−−
=+ −()+−()()−
=+()+−()−−()
()=+()
11 12 23
11 23
1
2
1
1
1121
(^1) (()+−()()+−()()
++()()− ()
−+()()− ()
−−()()−
−−
−−
−−
12 1
21 1 2
21 1
21 2 1
2
2
2
3
12
13
rX rX
rrXX
rr XX
rr
tt tt
tt tt
tt tt
tt
var ˆ var ˆ
cov ˆ ,ˆ
cov ˆ ,ˆ
cov()XXXˆtt−− 13 ,ˆ
202 RISK ARBITRAGE PAIRS