Final_1.pdf

(Tuis.) #1

Now the state equation is given as


The observation equation is given as


The variance of Ytis calculated as described in the discussion of the obser-
vation equation. We now define


gt= 1 – Kt, where Ktis the Kalman gain as describedin the standard predictor-
corrector framework. The Kalman equations providing the minimum vari-
ance linear estimate are as follows:


We now proceed to obtain the recursive relation for. The
Kalman equation for subscript t– 1 is as follows:


Substituting for Xˆtt−− 12 | , we have


XgXtt||−−−− 1112 =+−t ˆt t () 1 gYt t− 1

cov(XXˆtt−− 12 ,ˆ )

var ˆ

var ˆ var

var ˆ var
|

|

|

X


XY


XY


tt

tt t

tt t

()=


()()


()+ ()




1

1

ˆˆ


XgXtt||=+−t tt− 1 () 1 gYt t

g

Y


YX


t

t
ttt

=


()


()+ ()−


var
var var ˆ|1

YXttt=+ˆ η

ˆˆ ˆˆ ˆˆ


ˆˆˆˆ


var ˆ var ˆ

|

|

|

XXrXX rXX

XrXrXrX

XrX

tt t t t t t t t

tt tt tt tt

tt t t

−− −− −−

−− −−

−−

=+ −()+−()()−


=+()+−()−−()


()=+()


11 12 23

11 23

1

2
1

1


1121


(^1) (()+−()()+−()()
++()()− ()
−+()()− ()
−−()()−
−−
−−
−−


12 1


21 1 2


21 1


21 2 1


2
2

2
3

12

13

rX rX

rrXX

rr XX

rr

tt tt

tt tt

tt tt

tt

var ˆ var ˆ

cov ˆ ,ˆ

cov ˆ ,ˆ

cov()XXXˆtt−− 13 ,ˆ

202 RISK ARBITRAGE PAIRS

Free download pdf