4.3 Electroweak theory 155written as
φ=χ(
ζ 1
ζ 2)
=χ(
ζ 2 ∗ ζ 1
−ζ 1 ∗ ζ 2)(
0
1
)
≡χζφ 0 , (4.47)whereχis a real field andζ 1 ,ζ 2 are two complex scalar fields satisfying the condition
|ζ 1 |^2 +|ζ 2 |^2 = 1 .The definition of theSU( 2 )matrixζand the constant vectorφ 0
can easily be read off the last equality. Substitutingφ=χζφ 0 in (4.45), we obtain
Lφ=1
2
∂μχ∂μχ−V(χ^2 )+χ^2
2φ† 0(
gGμ−1
2
g′Bμ)(
gGμ−1
2
g′Bμ)
φ 0 ,
(4.48)where
Gμ≡ζ−^1 Aμζ−i
g
ζ−^1 ∂μζ (4.49)areSU( 2 )gauge-invariant variables.
Problem 4.11Consider theSU( 2 )transformation
(
ζ 1
ζ 2
)
→
( ̃
ζ 1
ζ ̃ 2)
=U
(
ζ 1
ζ 2)
(4.50)
accompanied by theU( 1 )transformationζ ̃→e
2 ig′λ ̃
ζand verify that
ζ→(
e−
2 ig′λ ̃
ζ 2 ∗ e
2 ig′λ ̃
ζ 1
−e−
2 ig′λ ̃
ζ 1 ∗ e
2 ig′λ ̃
ζ 2)
=UζE, (4.51)where
ζ≡(
ζ 2 ∗ ζ 1
−ζ 1 ∗ ζ 2)
, E≡
(
e−
i 2 g′λ
0
0 e
i 2 g′λ)
(4.52)
(HintNote that an arbitrarySU( 2 )matrix has the same form as matrixζwithζ 1 ,ζ 2
replaced by some complex numbersα, β.)
Using this result, it is easy to see that the fieldGμisSU( 2 )gauge-invariant, that
is,
Gμ→Gμ (4.53)as
ζ→Uζ, Aμ→UAμU−^1 +(i/g)(∂μU)U−^1.Thus, we have rewritten our original Lagrangian (4.45) in terms ofSU( 2 )gauge-
invariant variablesχ,Gμ,Bμ.