156 The very early universe
The fieldsBμandGμchange underU( 1 )transformations. FieldBμtransforms
as
Bμ→Bμ+∂μλ. (4.54)
Taking into account thatAμ→Aμandζ→ζE,where matrixEis defined in
(4.52), we find that
Gμ→G ̃μ=E−^1 GμE−
i
g
E−^1 ∂μE (4.55)
under theU( 1 )transformations.
MatrixGμis the Hermitian traceless matrix
Gμ≡
(
−G^3 μ/ 2 −Wμ+/
√
2
−Wμ−/
√
2 G^3 μ/ 2
)
, (4.56)
whereWμ±are a conjugate pair of complex vector fields andG^3 μis a real vector
field. In parameterizing matrixGμwe have used the standard sign convention and
normalization adopted in the literature. Substituting this expression in (4.48) and
replacing fieldsG^3 μandBμwith the “orthogonal” linear combinationsZμandAμ,
(
Aμ
Zμ
)
≡
(
cosθw sinθw
−sinθw cosθw
)(
Bμ
G^3 μ
)
, (4.57)
whereθwis the Weinberg angle and
cosθw=
g
√
g^2 +g′^2
, (4.58)
we can rewrite (4.48) in the following form:
Lφ=
1
2
∂μχ∂μχ−V(χ^2 )+
(g^2 +g′^2 )χ^2
8
ZμZμ+
g^2 χ^2
4
Wμ+W−μ. (4.59)
Because
trF^2 (A)=trF^2 (G),
whereF^2 ≡FμνFμν,the Lagrangian for the gauge fields is
LF=−^14 F^2 (B)−^12 trF^2 (G). (4.60)
Problem 4.12Substituting (4.56) in (4.60) and using the definitions (4.13) and
(4.57), verify that (4.60) can be rewritten as
LF=−^14 F^2 (A)−^14 F^2 (Z)−^12 Fμν(W+)Fμν(W−), (4.61)