H 3 CC
CH 3
CH 2
H
H CH 3 CCH 3 H
CH 3
+
tert-Butyl radical (a 3o radical)
∆H° = + 381 kJ mol–1
CH 3 CCH 2
CH 3
H
Isobutyl radical (a 1o radical)
H 3 CC + H
CH 3
CH 2
H
H
∆H° = + 410 kJ mol–1
1 o radical
2 o radical
PE PE
15 kJ mol−^1
CH 3 CH 2 CH 2
3 o radical
∆Ho = +381 kJ mol−^1
∆Ho = +410 kJ mol−^1
CH 3 CHCH 3
CH 3 CCH 3
CH 3 CHCH 2
29 kJ mol−^1
1 o radical
CH 3
CH 3
CH 3
CH 3 CH 2 CH 2 + H
CH 3 CHCH 3 + H
+ H
∆Ho = +410 kJ mol−^1
∆Ho = +395 kJ mol−^1
+ H
Figure 10.1 (a) Comparison of the potential energies of the propyl radical (+H•)
and the isopropyl radical (+H•) relative to propane. The isopropyl
radical –– a 2° radical –– is more stable than the 1° radical by 15 kJ
mole–1. (b) Comparison of the potential energies of the tert-butyl
radical (+H•) and the isobutyl radical (+H•) relative to isobutane. The
3° radical is more stable than the 1° radical by 29 kJ mole–1.
- The relative stabilities of alkyl radicals: