∫
x^3 sinax dx=
( 3 x 2
a^2 −
6
a^4
)
sinax+
( 6 x
a −
x^3
a
)
cosax+C
∫
xnsinax dx=−a^1 xncosax+an 2 xn−^1 sinax−n(na− 2 1)
∫
xn−^2 sinax dx
∫ sinax
x dx=ax−
a^3 x^3
3 ·3!+
a^5 x^5
5 ·5!−
a^7 x^7
7 ·7!+···+
(−1)nx^2 n+1x^2 n+1
(2n+ 1)·(2n+ 1)!+···
∫ sinax
x^2 dx=−
1
asinax+a
∫ cosax
x dx
∫ sinax
x^3 dx=−
a
2 xcosax−
1
2 x^2 sinax−
a^2
2
∫ sinax
x dx
∫ sinax
xn dx=−
sinax
(n−1)xn−^1 +
a
n− 1
∫ cosax
xn−^1 dx
∫ dx
sinax=
1
aln|cscas−cotax|+C
∫ x dx
sinax=
1
a^2
[
ax+a
(^3) x 3
18 +
7 a^5 x^5
1800 +···+
2(2^2 n−^1 −1)Bna^2 n+1x^2 n+1
(2n+ 1)! +···
]
+C
whereBnis the nthBernoulli numberB 1 = 1/ 6 ,B 2 = 1/ 30 ,.. .Note scaling and shifting
393.
∫ dx
xsinax=−
1
ax+
ax
6 +
7 a^3 x^3
1080 +···+
2(2^2 n−^1 −1)Bna^2 n+1x^2 n+1
(2n−1)(2n)! +···+C
394.
∫
sin^2 ax dx=x 2 −sin 2 4 aax+C
395.
∫
xsin^2 ax dx=x
2
4 −
xsin2ax
4 a −
cos 2ax
8 a^2 +C
396.
∫
x^2 sin^2 ax dx= 61 a− 4 a^12 cos 2ax+ 241 a 3 (3− 6 a^2 x^2 ) sin 2ax+C
397.
∫
sin^3 ax dx=−cosaax+cos
(^2) ax
3 a +C
398.
∫
xsin^3 ax dx= 121 axcos 3ax− 361 a 2 sin 3ax− 43 axcosax+ 43 a 2 sinax+C
399.
∫
sin^4 ax dx=^38 x−sin 2 4 aax+sin 4 32 aax+C
400.
∫ dx
sin^2 ax=−
1
acotax+C
Appendix C