524 | Thermodynamics
Process 4-5(isentropic expansion of an ideal gas in a turbine): Neglecting
the kinetic energy changes across the compressor and the turbine and
assuming the turbine work to be equal to the compressor work, we find the
temperature and pressure at the turbine exit to be
(b) To find the air velocity at the nozzle exit, we need to first determine the
nozzle exit temperature and then apply the steady-flow energy equation.
Process 5-6(isentropic expansion of an ideal gas in a nozzle):
(c) The propulsive efficiency of a turbojet engine is the ratio of the propul-
sive power developed W
.
Pto the total heat transfer rate to the working fluid:
That is, 22.5 percent of the energy input is used to propel the aircraft and
to overcome the drag force exerted by the atmospheric air.
hP
W
#
P
Q
#
in
8276 Btu>s
36,794 Btu>s
22.5%
36,794 Btu>s
1 100 lbm>s 21 0.240 Btu>lbm#R 2312460 9272 R 4
Q
#
inm
#
1 h 4 h 32 m
#
cp 1 T 4 T 32
8276 Btu>s¬ 1 or 11,707 hp 2
1 100 lbm>s 2313288 8502 ft>s 41 850 ft>s2a
1 Btu>lbm
25,037 ft^2 >s^2
b
W
#
Pm
# 1 V
exitVinlet^2 Vaircraft
3288 ft/s
B
21 0.240 Btu>lbm#R 2312013 11142 R4a
25,037 ft^2 >s^2
1 Btu>lbm
b
V 6 22 cp 1 T 5 T 62
0 cp 1 T 6 T 52
V^26
2
h 6
V 62
2
h 5
V 52
2
T 6 T 5 a
P 6
P 5
b
1 k 1 2>k
1 2013 R2a
5 psia
39.7 psia
b
1 1.4 1 2>1.4
1114 R
P 5 P 4 a
T 5
T 4
b
k>1k 12
1 80 psia2a
2013 R
2460 R
b
1.4>11.4 12
39.7 psia
T 5 T 4 T 3 T 2 2460 927 480 2013 R
cp 1 T 3 T 22 cp 1 T 4 T 52
h 3 h 2 h 4 h 5
wcomp,inwturb,out
0
¡