Lesson 14: Exploring Special Quadrilaterals
Example 1
Opposite angles in a quadrilateral are congruent. Prove that the quadrilateral must
EHDSDUDOOHORJUDPͼ6HHFigure 14.1ͽ
Solution
Following the labeling given in the diagram, because the angles in a quadrilateral
sum to 360°, we have 2x + 2y = 360°, giving x + y = 180°. This means that each pair of angles x and y in the
GLDJUDPFRQVWLWXWHDSDLURIVDPHVLGHLQWHULRUDQJOHVVXPPLQJWRIRUFLQJHDFKSDLURIRSSRVLWHVLGHVRI
WKH¿JXUHWREHSDUDOOHO:HKDYHDSDUDOOHORJUDP
Example 2
Suppose that A ͼíͽB ͼͽC ͼͽDQGD ͼíͽ:KDWW\SHRITXDGULODWHUDOLVABCD?
Solution
/RRNDWWKHPLGSRLQWVRIWKHGLDJRQDOV
Midpoint AC §· ̈ ̧©¹^32 ,9.
Midpoint BD §· ̈ ̧©¹^32 ,9.
The diagonals bisect each other, so we have a parallelogram, at the very least.
/RRNDWWKHOHQJWKVRIWKHGLDJRQDOV
AC 34 5.^22
BD 50 5.^22
These are the same. The parallelogram is a rectangle, at the very least.
/RRNDWWKHVORSHVRIWKHGLDJRQDOVHJPHQWV
Slope AC 43.
Slope BD (^) ^05 0.
These are not negative reciprocals, so the diagonals are not perpendicular. The rectangle is not a square.
ABCDLVDQRQVTXDUHUHFWDQJOH
y
y
x
x
Figure 14.1