158 6 Deflections of Elastic Structures
Fig. 6.8 Fixed-fixed beam
subjected to linear settlement
of support
RB
B
DB
RA MB
MA
l
A EI
Solution.According to (6.5), the expression for elastic curve is
EIy.x/DEIy 0 CEI 0 x
RA.x0/^3
3Š
C
MA.x0/^2
2Š
:
Since initial parameters arey 0 D 0 and 0 D 0 then
EIy.x/D
RAx^3
6
MAx^2
2
: (a)
For right fixed support the displacement isB, therefore
EIy.l/D
RAl^3
6
MAl^2
2
DEIB (b)
Expression for slope isEIy^0 .x/D.RAx^2 =2/MAx. For right fixed support the
slope is zero, so
EIy^0 .l /D
RAl^2
2
MAlD0: (c)
Solution of (b) and (c) leads to the following results:
RAD
12 EI
l^3
B."/; MAD
6 EI
l^2
B: (d)
Substitution of (d) into (a) allows calculating the transversal displacement of any
point of the beam.
Other required reactions may be determined considering the equilibrium
equations:
RBD
12 EI
l^3
B.#/ and MBD
6 EI
l^2
B: (e)
The negative signs show that actual directions for reactions and moments do not
coincide with adopted direction in Fig.6.8.
Formulas (d) and (e) will be used for analysis of statically indeterminate frames
by the displacement method (Chap. 8 ).