6.2 Initial Parameters Method 157
Fig. 6.7 Fixed-rolled beam
subjected to the angular
settlementof supportq 0l
yMA RA qx^0 y(x)A
BInitial
parameters:
y 0 = 0, q 0
q (l )Solution.According to (6.5), the expression for elastic curve isEIy.x/DEIy 0 CEI 0 x
RA.x0/^3
3ŠCMA.x0/^2
2Š:Since the initial parametery 0 D 0 ,thenEIy.x/DEI 0 xRAx^3
6MAx^2
2: (a)This equation contains two unknownsMAandRA. For their calculation we have
two additional equations.1.The transverse displacement at the right support equals zero
EIy.l/DEI 0 lMAl^2
2RAl^3
6D0: (b)2.Bending moment at supportBequals zero. The expression for bending moment
may be obtained by twice differentiating (a)
M.x/DEIy^00 .x/DMACRAx: (c)AtxDlwe have
M.l/DMACRAlD0: (d)
Solving (b) and (d) with respect toMAandRAleads to the following expressions
for reactions
MAD3 EI
l 0 ;RAD3 EI
l^2 0 : (e)The formulas (e) are presented in TableA.3; they are necessary for analysis of
statically indeterminate frames by the displacement method (Chap. 8 ).Example 6.6.The beamABis clamped at the left and right ends. Derive equation
of the elastic curve for the beam if the vertical relative displacement of supports is
B(Fig.6.8). Calculate corresponding reactions.