Advanced Methods of Structural Analysis

(Jacob Rumans) #1

Problems 319


primary system of the force method and corresponding unit bending moment
diagramM 1 are presented in Fig.9.2g.

Ta b l e 9. 1 Calculation of bending moments
Points M 1 M 1 Z 1 M 2 M 2 Z 2 MP^0 MP.kNm/
1 0:0 0:0 0:25 4:8 0:0 4:8
2–1 0:0 0:0 C0:5 C9:6 0:0 C9:6
2–3 0:0 0:0 1:0 19:2 C 32 C12:8
3–2 0:0 0:0 C0:5 C9:6 C 32 C41:6
2–4 C12:0 3:2 0:0 0:0 0:0 3:2
4–2 C12:0 3:2 0:0 0:0 0:0 3:2
4–5 12:0 C3:2 0:0 0:0 0:0 C3:2
5 0:0 0:0 0:0 0:0 0:0 0:0
C 0:0 0:0 0:25 4:8  16 20:8
Factor EI

The vertical displacement of pointAfor entire structure equals


AD

XZ MPM 1
EI

dsD

1
2 EI

1
2

 12  12 

2
3

3:2

1
1 EI

3:2 4  12

C

8
6  2 EI

.12:8 12 C 4 20:8 16 41:620/

D887:46C887:47Š 0

Construction of shear and axial force diagrams, computation of all reactions and
their verifications should be performed as usual.


Problems.......................................................................

9.1.Design diagram of the frame is shown in Fig.P9.1.


1.Determine the number of unknowns by the force method, displacement, and
mixed methods.
2.Show the primary system of the mixed method and set up of corresponding
canonical equations;
3.Explain the meaning of primary unknowns and canonical equations of the
mixed method.
4.Define the unit of coefficients and free term of canonical equations.
5.Describe the way of calculation of all coefficients of canonical equations and
free terms.
6.Explain the advantage of the mixed method with comparison of the force and
displacement methods.
Free download pdf