Advanced Methods of Structural Analysis

(Jacob Rumans) #1
13.5 Stability of Arches 487

3.Using expression (13.17a), the slope is


dw
d

DBncosnC

Ccos
n^2  1

: (13.19)

The slope at the support is
dw
ds

D';

the negative sign means the reactive momentM 0 and angle'have the opposite
directions. On the other hand
dw
ds

D

dw
Rd

;
so
dw
d

DR':

According to (13.15b)weget

'DC

EIsin ̨
kR^2

;so
dw
d

DC

EIsin ̨
kR

:

IfD ̨then the expression (13.19) becomes

Bncosn ̨C

Ccos ̨
n^2  1

DC

EIsin ̨
kR

:

After rearrangements this expression may be presented in form

Bncosn ̨CC


cos ̨
n^2  1

C

EIsin ̨
kR


D0: (13.20)

Equations (13.18)and(13.20) are homogeneous linear algebraic equations with re-
spect to unknown parametersBandC. The trivial solutionBDCD 0 corresponds
to state of the arch before the loss of stability. Nontrivial solution occurs if the fol-
lowing determinant is zero:

DD

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
sinn ̨

sin ̨
n^2  1

ncosn ̨I

cos ̨
n^2  1

C

EIsin ̨
kR

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

D 0 (13.21)

The stability equation (13.21) may be presented as follows:

tann ̨D

nk 0
k 0 cot ̨C.n^2 1/

;k 0 D

kR
EI

: (13.22)
Free download pdf