Modern Control Engineering

(Chris Devlin) #1
Example Problems and Solutions 831

where

The transfer function G(s)for the system defined by Equations (10–155) and (10–156) is

Noting that

we have

Note that D=b 0 .Since

we have

Hence,

Thus, we have shown that

Note that what we have derived here can be easily extended to the case when nis any positive
integer.

A–10–9. Consider a system defined by


y =Cx

x# =Ax+Bu

Q-^1 B=C


g 3
g 2
g 1

S= C


b 3 - a 3 b 0
b 2 - a 2 b 0
b 1 - a 1 b 0

S


g 1 =b 1 - a 1 b 0 , g 2 =b 2 - a 2 b 0 , g 3 =b 3 - a 3 b 0

=

b 0 s^3 +b 1 s^2 +b 2 s+b 3
s^3 +a 1 s^2 +a 2 s+a 3

=

b 0 s^3 +Ag 1 +a 1 b 0 Bs^2 +Ag 2 +a 2 b 0 Bs+g 3 +a 3 b 0
s^3 +a 1 s^2 +a 2 s+a 3

=

g 1 s^2 +g 2 s+g 3
s^3 +a 1 s^2 +a 2 s+a 3

+b 0

G(s)=

1

s^3 +a 1 s^2 +a 2 s+a 3

C 1 s s^2 DC


g 3
g 2
g 1

S +D


C


s


  • 1
    0


0

s


  • 1


a 3
a 2
s+a 1

S




  • 1




1

s^3 +a 1 s^2 +a 2 s+a 3

C


s^2 +a 1 s+a 2
s+a 1
1


  • a 3
    s^2 +a 1 s
    s

  • a 3 s

  • a 2 s-a 3
    s^2


S


G(s)=[ 0 0 1 ]C


s


  • 1
    0


0

s


  • 1


a 3
a 2
s+a 1

S



  • 1
    C


g 3
g 2
g 1

S+D


CQ=[0 0 1]


G(s)=CQAs I-Q-^1 AQB-^1 Q-^1 B+D

C


g 3
g 2
g 1

S =Q-^1 B

Free download pdf