Example Problems and Solutions 831whereThe transfer function G(s)for the system defined by Equations (10–155) and (10–156) isNoting thatwe haveNote that D=b 0 .Sincewe haveHence,Thus, we have shown thatNote that what we have derived here can be easily extended to the case when nis any positive
integer.A–10–9. Consider a system defined by
y =Cxx# =Ax+BuQ-^1 B=C
g 3
g 2
g 1S= C
b 3 - a 3 b 0
b 2 - a 2 b 0
b 1 - a 1 b 0S
g 1 =b 1 - a 1 b 0 , g 2 =b 2 - a 2 b 0 , g 3 =b 3 - a 3 b 0=
b 0 s^3 +b 1 s^2 +b 2 s+b 3
s^3 +a 1 s^2 +a 2 s+a 3=
b 0 s^3 +Ag 1 +a 1 b 0 Bs^2 +Ag 2 +a 2 b 0 Bs+g 3 +a 3 b 0
s^3 +a 1 s^2 +a 2 s+a 3=
g 1 s^2 +g 2 s+g 3
s^3 +a 1 s^2 +a 2 s+a 3+b 0G(s)=1
s^3 +a 1 s^2 +a 2 s+a 3C 1 s s^2 DC
g 3
g 2
g 1S +D
C
s- 1
0
0
s- 1
a 3
a 2
s+a 1S
1
1
s^3 +a 1 s^2 +a 2 s+a 3C
s^2 +a 1 s+a 2
s+a 1
1- a 3
s^2 +a 1 s
s - a 3 s
- a 2 s-a 3
s^2
S
G(s)=[ 0 0 1 ]C
s- 1
0
0
s- 1
a 3
a 2
s+a 1S
- 1
C
g 3
g 2
g 1S+D
CQ=[0 0 1]
G(s)=CQAs I-Q-^1 AQB-^1 Q-^1 B+DC
g 3
g 2
g 1S =Q-^1 B